1040 lines
41 KiB
Plaintext
1040 lines
41 KiB
Plaintext
|
Fog Creation...
|
||
|
|
||
|
Level to Y
|
||
|
0 -> 0.14699 0.14746
|
||
|
1 -> 0.26191 0.2627
|
||
|
2 -> 0.36719 0.36816
|
||
|
3 -> 0.46667 0.4668
|
||
|
4 -> 0.56204 0.5625
|
||
|
5 -> 0.65426 0.6543
|
||
|
6 -> 0.74394 0.74414
|
||
|
7 -> 0.83151 3.4028e+038
|
||
|
|
||
|
|
||
|
|
||
|
Y to level
|
||
|
0 [0 , 0.00097656) -> 0, 0
|
||
|
1 [0.00097656, 0.0019531) -> 0, 0.0024372
|
||
|
2 [0.0019531, 0.0029297) -> 0, 0.0055992
|
||
|
3 [0.0029297, 0.0039063) -> 0, 0.0091083
|
||
|
4 [0.0039063, 0.0048828) -> 0, 0.012864
|
||
|
5 [0.0048828, 0.0058594) -> 0, 0.016813
|
||
|
6 [0.0058594, 0.0068359) -> 0, 0.020925
|
||
|
7 [0.0068359, 0.0078125) -> 0, 0.025177
|
||
|
8 [0.0078125, 0.0087891) -> 0, 0.029553
|
||
|
9 [0.0087891, 0.0097656) -> 0, 0.034039
|
||
|
10 [0.0097656, 0.010742 ) -> 0, 0.038627
|
||
|
11 [0.010742 , 0.011719 ) -> 0, 0.043307
|
||
|
12 [0.011719 , 0.012695 ) -> 0, 0.048074
|
||
|
13 [0.012695 , 0.013672 ) -> 0, 0.05292
|
||
|
14 [0.013672 , 0.014648 ) -> 0, 0.057842
|
||
|
15 [0.014648 , 0.015625 ) -> 0, 0.062835
|
||
|
16 [0.015625 , 0.016602 ) -> 0, 0.067895
|
||
|
17 [0.016602 , 0.017578 ) -> 0, 0.073018
|
||
|
18 [0.017578 , 0.018555 ) -> 0, 0.078202
|
||
|
19 [0.018555 , 0.019531 ) -> 0, 0.083444
|
||
|
20 [0.019531 , 0.020508 ) -> 0, 0.088742
|
||
|
21 [0.020508 , 0.021484 ) -> 0, 0.094092
|
||
|
22 [0.021484 , 0.022461 ) -> 0, 0.099494
|
||
|
23 [0.022461 , 0.023438 ) -> 0, 0.10495
|
||
|
24 [0.023438 , 0.024414 ) -> 0, 0.11044
|
||
|
25 [0.024414 , 0.025391 ) -> 0, 0.11599
|
||
|
26 [0.025391 , 0.026367 ) -> 0, 0.12158
|
||
|
27 [0.026367 , 0.027344 ) -> 0, 0.12721
|
||
|
28 [0.027344 , 0.02832 ) -> 0, 0.13289
|
||
|
29 [0.02832 , 0.029297 ) -> 0, 0.1386
|
||
|
30 [0.029297 , 0.030273 ) -> 0, 0.14436
|
||
|
31 [0.030273 , 0.03125 ) -> 0, 0.15015
|
||
|
32 [0.03125 , 0.032227 ) -> 0, 0.15598
|
||
|
33 [0.032227 , 0.033203 ) -> 0, 0.16185
|
||
|
34 [0.033203 , 0.03418 ) -> 0, 0.16775
|
||
|
35 [0.03418 , 0.035156 ) -> 0, 0.17369
|
||
|
36 [0.035156 , 0.036133 ) -> 0, 0.17966
|
||
|
37 [0.036133 , 0.037109 ) -> 0, 0.18567
|
||
|
38 [0.037109 , 0.038086 ) -> 0, 0.1917
|
||
|
39 [0.038086 , 0.039063 ) -> 0, 0.19777
|
||
|
40 [0.039063 , 0.040039 ) -> 0, 0.20387
|
||
|
41 [0.040039 , 0.041016 ) -> 0, 0.21001
|
||
|
42 [0.041016 , 0.041992 ) -> 0, 0.21617
|
||
|
43 [0.041992 , 0.042969 ) -> 0, 0.22236
|
||
|
44 [0.042969 , 0.043945 ) -> 0, 0.22858
|
||
|
45 [0.043945 , 0.044922 ) -> 0, 0.23483
|
||
|
46 [0.044922 , 0.045898 ) -> 0, 0.2411
|
||
|
47 [0.045898 , 0.046875 ) -> 0, 0.24741
|
||
|
48 [0.046875 , 0.047852 ) -> 0, 0.25374
|
||
|
49 [0.047852 , 0.048828 ) -> 0, 0.26009
|
||
|
50 [0.048828 , 0.049805 ) -> 0, 0.26647
|
||
|
51 [0.049805 , 0.050781 ) -> 0, 0.27288
|
||
|
52 [0.050781 , 0.051758 ) -> 0, 0.27932
|
||
|
53 [0.051758 , 0.052734 ) -> 0, 0.28577
|
||
|
54 [0.052734 , 0.053711 ) -> 0, 0.29226
|
||
|
55 [0.053711 , 0.054688 ) -> 0, 0.29876
|
||
|
56 [0.054688 , 0.055664 ) -> 0, 0.30529
|
||
|
57 [0.055664 , 0.056641 ) -> 0, 0.31185
|
||
|
58 [0.056641 , 0.057617 ) -> 0, 0.31842
|
||
|
59 [0.057617 , 0.058594 ) -> 0, 0.32502
|
||
|
60 [0.058594 , 0.05957 ) -> 0, 0.33164
|
||
|
61 [0.05957 , 0.060547 ) -> 0, 0.33829
|
||
|
62 [0.060547 , 0.061523 ) -> 0, 0.34495
|
||
|
63 [0.061523 , 0.0625 ) -> 0, 0.35164
|
||
|
64 [0.0625 , 0.063477 ) -> 0, 0.35835
|
||
|
65 [0.063477 , 0.064453 ) -> 0, 0.36508
|
||
|
66 [0.064453 , 0.06543 ) -> 0, 0.37183
|
||
|
67 [0.06543 , 0.066406 ) -> 0, 0.3786
|
||
|
68 [0.066406 , 0.067383 ) -> 0, 0.38539
|
||
|
69 [0.067383 , 0.068359 ) -> 0, 0.3922
|
||
|
70 [0.068359 , 0.069336 ) -> 0, 0.39903
|
||
|
71 [0.069336 , 0.070313 ) -> 0, 0.40588
|
||
|
72 [0.070313 , 0.071289 ) -> 0, 0.41275
|
||
|
73 [0.071289 , 0.072266 ) -> 0, 0.41964
|
||
|
74 [0.072266 , 0.073242 ) -> 0, 0.42655
|
||
|
75 [0.073242 , 0.074219 ) -> 0, 0.43348
|
||
|
76 [0.074219 , 0.075195 ) -> 0, 0.44042
|
||
|
77 [0.075195 , 0.076172 ) -> 0, 0.44738
|
||
|
78 [0.076172 , 0.077148 ) -> 0, 0.45437
|
||
|
79 [0.077148 , 0.078125 ) -> 0, 0.46136
|
||
|
80 [0.078125 , 0.079102 ) -> 0, 0.46838
|
||
|
81 [0.079102 , 0.080078 ) -> 0, 0.47542
|
||
|
82 [0.080078 , 0.081055 ) -> 0, 0.48247
|
||
|
83 [0.081055 , 0.082031 ) -> 0, 0.48954
|
||
|
84 [0.082031 , 0.083008 ) -> 0, 0.49662
|
||
|
85 [0.083008 , 0.083984 ) -> 0, 0.50373
|
||
|
86 [0.083984 , 0.084961 ) -> 0, 0.51085
|
||
|
87 [0.084961 , 0.085938 ) -> 0, 0.51798
|
||
|
88 [0.085938 , 0.086914 ) -> 0, 0.52514
|
||
|
89 [0.086914 , 0.087891 ) -> 0, 0.5323
|
||
|
90 [0.087891 , 0.088867 ) -> 0, 0.53949
|
||
|
91 [0.088867 , 0.089844 ) -> 0, 0.54669
|
||
|
92 [0.089844 , 0.09082 ) -> 0, 0.55391
|
||
|
93 [0.09082 , 0.091797 ) -> 0, 0.56114
|
||
|
94 [0.091797 , 0.092773 ) -> 0, 0.56839
|
||
|
95 [0.092773 , 0.09375 ) -> 0, 0.57565
|
||
|
96 [0.09375 , 0.094727 ) -> 0, 0.58293
|
||
|
97 [0.094727 , 0.095703 ) -> 0, 0.59023
|
||
|
98 [0.095703 , 0.09668 ) -> 0, 0.59753
|
||
|
99 [0.09668 , 0.097656 ) -> 0, 0.60486
|
||
|
100 [0.097656 , 0.098633 ) -> 0, 0.6122
|
||
|
101 [0.098633 , 0.099609 ) -> 0, 0.61955
|
||
|
102 [0.099609 , 0.10059 ) -> 0, 0.62692
|
||
|
103 [0.10059 , 0.10156 ) -> 0, 0.6343
|
||
|
104 [0.10156 , 0.10254 ) -> 0, 0.6417
|
||
|
105 [0.10254 , 0.10352 ) -> 0, 0.64911
|
||
|
106 [0.10352 , 0.10449 ) -> 0, 0.65654
|
||
|
107 [0.10449 , 0.10547 ) -> 0, 0.66398
|
||
|
108 [0.10547 , 0.10645 ) -> 0, 0.67143
|
||
|
109 [0.10645 , 0.10742 ) -> 0, 0.6789
|
||
|
110 [0.10742 , 0.1084 ) -> 0, 0.68638
|
||
|
111 [0.1084 , 0.10938 ) -> 0, 0.69387
|
||
|
112 [0.10938 , 0.11035 ) -> 0, 0.70138
|
||
|
113 [0.11035 , 0.11133 ) -> 0, 0.7089
|
||
|
114 [0.11133 , 0.1123 ) -> 0, 0.71644
|
||
|
115 [0.1123 , 0.11328 ) -> 0, 0.72398
|
||
|
116 [0.11328 , 0.11426 ) -> 0, 0.73155
|
||
|
117 [0.11426 , 0.11523 ) -> 0, 0.73912
|
||
|
118 [0.11523 , 0.11621 ) -> 0, 0.74671
|
||
|
119 [0.11621 , 0.11719 ) -> 0, 0.75431
|
||
|
120 [0.11719 , 0.11816 ) -> 0, 0.76192
|
||
|
121 [0.11816 , 0.11914 ) -> 0, 0.76955
|
||
|
122 [0.11914 , 0.12012 ) -> 0, 0.77718
|
||
|
123 [0.12012 , 0.12109 ) -> 0, 0.78483
|
||
|
124 [0.12109 , 0.12207 ) -> 0, 0.7925
|
||
|
125 [0.12207 , 0.12305 ) -> 0, 0.80017
|
||
|
126 [0.12305 , 0.12402 ) -> 0, 0.80786
|
||
|
127 [0.12402 , 0.125 ) -> 0, 0.81556
|
||
|
128 [0.125 , 0.12598 ) -> 0, 0.82327
|
||
|
129 [0.12598 , 0.12695 ) -> 0, 0.831
|
||
|
130 [0.12695 , 0.12793 ) -> 0, 0.83873
|
||
|
131 [0.12793 , 0.12891 ) -> 0, 0.84648
|
||
|
132 [0.12891 , 0.12988 ) -> 0, 0.85424
|
||
|
133 [0.12988 , 0.13086 ) -> 0, 0.86201
|
||
|
134 [0.13086 , 0.13184 ) -> 0, 0.8698
|
||
|
135 [0.13184 , 0.13281 ) -> 0, 0.87759
|
||
|
136 [0.13281 , 0.13379 ) -> 0, 0.8854
|
||
|
137 [0.13379 , 0.13477 ) -> 0, 0.89322
|
||
|
138 [0.13477 , 0.13574 ) -> 0, 0.90105
|
||
|
139 [0.13574 , 0.13672 ) -> 0, 0.90889
|
||
|
140 [0.13672 , 0.1377 ) -> 0, 0.91674
|
||
|
141 [0.1377 , 0.13867 ) -> 0, 0.9246
|
||
|
142 [0.13867 , 0.13965 ) -> 0, 0.93248
|
||
|
143 [0.13965 , 0.14063 ) -> 0, 0.94036
|
||
|
144 [0.14063 , 0.1416 ) -> 0, 0.94826
|
||
|
145 [0.1416 , 0.14258 ) -> 0, 0.95617
|
||
|
146 [0.14258 , 0.14355 ) -> 0, 0.96408
|
||
|
147 [0.14355 , 0.14453 ) -> 0, 0.97201
|
||
|
148 [0.14453 , 0.14551 ) -> 0, 0.97995
|
||
|
149 [0.14551 , 0.14648 ) -> 0, 0.98791
|
||
|
150 [0.14648 , 0.14746 ) -> 0, 0.99587
|
||
|
151 [0.14746 , 0.14844 ) -> 1, 1.0038
|
||
|
152 [0.14844 , 0.14941 ) -> 1, 1.0118
|
||
|
153 [0.14941 , 0.15039 ) -> 1, 1.0198
|
||
|
154 [0.15039 , 0.15137 ) -> 1, 1.0278
|
||
|
155 [0.15137 , 0.15234 ) -> 1, 1.0358
|
||
|
156 [0.15234 , 0.15332 ) -> 1, 1.0439
|
||
|
157 [0.15332 , 0.1543 ) -> 1, 1.0519
|
||
|
158 [0.1543 , 0.15527 ) -> 1, 1.0599
|
||
|
159 [0.15527 , 0.15625 ) -> 1, 1.068
|
||
|
160 [0.15625 , 0.15723 ) -> 1, 1.0761
|
||
|
161 [0.15723 , 0.1582 ) -> 1, 1.0841
|
||
|
162 [0.1582 , 0.15918 ) -> 1, 1.0922
|
||
|
163 [0.15918 , 0.16016 ) -> 1, 1.1003
|
||
|
164 [0.16016 , 0.16113 ) -> 1, 1.1084
|
||
|
165 [0.16113 , 0.16211 ) -> 1, 1.1165
|
||
|
166 [0.16211 , 0.16309 ) -> 1, 1.1247
|
||
|
167 [0.16309 , 0.16406 ) -> 1, 1.1328
|
||
|
168 [0.16406 , 0.16504 ) -> 1, 1.1409
|
||
|
169 [0.16504 , 0.16602 ) -> 1, 1.1491
|
||
|
170 [0.16602 , 0.16699 ) -> 1, 1.1573
|
||
|
171 [0.16699 , 0.16797 ) -> 1, 1.1654
|
||
|
172 [0.16797 , 0.16895 ) -> 1, 1.1736
|
||
|
173 [0.16895 , 0.16992 ) -> 1, 1.1818
|
||
|
174 [0.16992 , 0.1709 ) -> 1, 1.19
|
||
|
175 [0.1709 , 0.17188 ) -> 1, 1.1982
|
||
|
176 [0.17188 , 0.17285 ) -> 1, 1.2064
|
||
|
177 [0.17285 , 0.17383 ) -> 1, 1.2147
|
||
|
178 [0.17383 , 0.1748 ) -> 1, 1.2229
|
||
|
179 [0.1748 , 0.17578 ) -> 1, 1.2312
|
||
|
180 [0.17578 , 0.17676 ) -> 1, 1.2394
|
||
|
181 [0.17676 , 0.17773 ) -> 1, 1.2477
|
||
|
182 [0.17773 , 0.17871 ) -> 1, 1.256
|
||
|
183 [0.17871 , 0.17969 ) -> 1, 1.2643
|
||
|
184 [0.17969 , 0.18066 ) -> 1, 1.2725
|
||
|
185 [0.18066 , 0.18164 ) -> 1, 1.2808
|
||
|
186 [0.18164 , 0.18262 ) -> 1, 1.2892
|
||
|
187 [0.18262 , 0.18359 ) -> 1, 1.2975
|
||
|
188 [0.18359 , 0.18457 ) -> 1, 1.3058
|
||
|
189 [0.18457 , 0.18555 ) -> 1, 1.3142
|
||
|
190 [0.18555 , 0.18652 ) -> 1, 1.3225
|
||
|
191 [0.18652 , 0.1875 ) -> 1, 1.3309
|
||
|
192 [0.1875 , 0.18848 ) -> 1, 1.3392
|
||
|
193 [0.18848 , 0.18945 ) -> 1, 1.3476
|
||
|
194 [0.18945 , 0.19043 ) -> 1, 1.356
|
||
|
195 [0.19043 , 0.19141 ) -> 1, 1.3644
|
||
|
196 [0.19141 , 0.19238 ) -> 1, 1.3728
|
||
|
197 [0.19238 , 0.19336 ) -> 1, 1.3812
|
||
|
198 [0.19336 , 0.19434 ) -> 1, 1.3896
|
||
|
199 [0.19434 , 0.19531 ) -> 1, 1.398
|
||
|
200 [0.19531 , 0.19629 ) -> 1, 1.4065
|
||
|
201 [0.19629 , 0.19727 ) -> 1, 1.4149
|
||
|
202 [0.19727 , 0.19824 ) -> 1, 1.4234
|
||
|
203 [0.19824 , 0.19922 ) -> 1, 1.4318
|
||
|
204 [0.19922 , 0.2002 ) -> 1, 1.4403
|
||
|
205 [0.2002 , 0.20117 ) -> 1, 1.4488
|
||
|
206 [0.20117 , 0.20215 ) -> 1, 1.4572
|
||
|
207 [0.20215 , 0.20313 ) -> 1, 1.4657
|
||
|
208 [0.20313 , 0.2041 ) -> 1, 1.4742
|
||
|
209 [0.2041 , 0.20508 ) -> 1, 1.4827
|
||
|
210 [0.20508 , 0.20605 ) -> 1, 1.4913
|
||
|
211 [0.20605 , 0.20703 ) -> 1, 1.4998
|
||
|
212 [0.20703 , 0.20801 ) -> 1, 1.5083
|
||
|
213 [0.20801 , 0.20898 ) -> 1, 1.5169
|
||
|
214 [0.20898 , 0.20996 ) -> 1, 1.5254
|
||
|
215 [0.20996 , 0.21094 ) -> 1, 1.534
|
||
|
216 [0.21094 , 0.21191 ) -> 1, 1.5425
|
||
|
217 [0.21191 , 0.21289 ) -> 1, 1.5511
|
||
|
218 [0.21289 , 0.21387 ) -> 1, 1.5597
|
||
|
219 [0.21387 , 0.21484 ) -> 1, 1.5683
|
||
|
220 [0.21484 , 0.21582 ) -> 1, 1.5769
|
||
|
221 [0.21582 , 0.2168 ) -> 1, 1.5855
|
||
|
222 [0.2168 , 0.21777 ) -> 1, 1.5941
|
||
|
223 [0.21777 , 0.21875 ) -> 1, 1.6027
|
||
|
224 [0.21875 , 0.21973 ) -> 1, 1.6113
|
||
|
225 [0.21973 , 0.2207 ) -> 1, 1.62
|
||
|
226 [0.2207 , 0.22168 ) -> 1, 1.6286
|
||
|
227 [0.22168 , 0.22266 ) -> 1, 1.6373
|
||
|
228 [0.22266 , 0.22363 ) -> 1, 1.6459
|
||
|
229 [0.22363 , 0.22461 ) -> 1, 1.6546
|
||
|
230 [0.22461 , 0.22559 ) -> 1, 1.6633
|
||
|
231 [0.22559 , 0.22656 ) -> 1, 1.672
|
||
|
232 [0.22656 , 0.22754 ) -> 1, 1.6807
|
||
|
233 [0.22754 , 0.22852 ) -> 1, 1.6893
|
||
|
234 [0.22852 , 0.22949 ) -> 1, 1.6981
|
||
|
235 [0.22949 , 0.23047 ) -> 1, 1.7068
|
||
|
236 [0.23047 , 0.23145 ) -> 1, 1.7155
|
||
|
237 [0.23145 , 0.23242 ) -> 1, 1.7242
|
||
|
238 [0.23242 , 0.2334 ) -> 1, 1.7329
|
||
|
239 [0.2334 , 0.23438 ) -> 1, 1.7417
|
||
|
240 [0.23438 , 0.23535 ) -> 1, 1.7504
|
||
|
241 [0.23535 , 0.23633 ) -> 1, 1.7592
|
||
|
242 [0.23633 , 0.2373 ) -> 1, 1.768
|
||
|
243 [0.2373 , 0.23828 ) -> 1, 1.7767
|
||
|
244 [0.23828 , 0.23926 ) -> 1, 1.7855
|
||
|
245 [0.23926 , 0.24023 ) -> 1, 1.7943
|
||
|
246 [0.24023 , 0.24121 ) -> 1, 1.8031
|
||
|
247 [0.24121 , 0.24219 ) -> 1, 1.8119
|
||
|
248 [0.24219 , 0.24316 ) -> 1, 1.8207
|
||
|
249 [0.24316 , 0.24414 ) -> 1, 1.8295
|
||
|
250 [0.24414 , 0.24512 ) -> 1, 1.8383
|
||
|
251 [0.24512 , 0.24609 ) -> 1, 1.8471
|
||
|
252 [0.24609 , 0.24707 ) -> 1, 1.856
|
||
|
253 [0.24707 , 0.24805 ) -> 1, 1.8648
|
||
|
254 [0.24805 , 0.24902 ) -> 1, 1.8737
|
||
|
255 [0.24902 , 0.25 ) -> 1, 1.8825
|
||
|
256 [0.25 , 0.25098 ) -> 1, 1.8914
|
||
|
257 [0.25098 , 0.25195 ) -> 1, 1.9003
|
||
|
258 [0.25195 , 0.25293 ) -> 1, 1.9091
|
||
|
259 [0.25293 , 0.25391 ) -> 1, 1.918
|
||
|
260 [0.25391 , 0.25488 ) -> 1, 1.9269
|
||
|
261 [0.25488 , 0.25586 ) -> 1, 1.9358
|
||
|
262 [0.25586 , 0.25684 ) -> 1, 1.9447
|
||
|
263 [0.25684 , 0.25781 ) -> 1, 1.9536
|
||
|
264 [0.25781 , 0.25879 ) -> 1, 1.9625
|
||
|
265 [0.25879 , 0.25977 ) -> 1, 1.9715
|
||
|
266 [0.25977 , 0.26074 ) -> 1, 1.9804
|
||
|
267 [0.26074 , 0.26172 ) -> 1, 1.9893
|
||
|
268 [0.26172 , 0.2627 ) -> 1, 1.9983
|
||
|
269 [0.2627 , 0.26367 ) -> 2, 2.0072
|
||
|
270 [0.26367 , 0.26465 ) -> 2, 2.0162
|
||
|
271 [0.26465 , 0.26563 ) -> 2, 2.0251
|
||
|
272 [0.26563 , 0.2666 ) -> 2, 2.0341
|
||
|
273 [0.2666 , 0.26758 ) -> 2, 2.0431
|
||
|
274 [0.26758 , 0.26855 ) -> 2, 2.0521
|
||
|
275 [0.26855 , 0.26953 ) -> 2, 2.0611
|
||
|
276 [0.26953 , 0.27051 ) -> 2, 2.0701
|
||
|
277 [0.27051 , 0.27148 ) -> 2, 2.0791
|
||
|
278 [0.27148 , 0.27246 ) -> 2, 2.0881
|
||
|
279 [0.27246 , 0.27344 ) -> 2, 2.0971
|
||
|
280 [0.27344 , 0.27441 ) -> 2, 2.1061
|
||
|
281 [0.27441 , 0.27539 ) -> 2, 2.1151
|
||
|
282 [0.27539 , 0.27637 ) -> 2, 2.1242
|
||
|
283 [0.27637 , 0.27734 ) -> 2, 2.1332
|
||
|
284 [0.27734 , 0.27832 ) -> 2, 2.1423
|
||
|
285 [0.27832 , 0.2793 ) -> 2, 2.1513
|
||
|
286 [0.2793 , 0.28027 ) -> 2, 2.1604
|
||
|
287 [0.28027 , 0.28125 ) -> 2, 2.1695
|
||
|
288 [0.28125 , 0.28223 ) -> 2, 2.1785
|
||
|
289 [0.28223 , 0.2832 ) -> 2, 2.1876
|
||
|
290 [0.2832 , 0.28418 ) -> 2, 2.1967
|
||
|
291 [0.28418 , 0.28516 ) -> 2, 2.2058
|
||
|
292 [0.28516 , 0.28613 ) -> 2, 2.2149
|
||
|
293 [0.28613 , 0.28711 ) -> 2, 2.224
|
||
|
294 [0.28711 , 0.28809 ) -> 2, 2.2331
|
||
|
295 [0.28809 , 0.28906 ) -> 2, 2.2422
|
||
|
296 [0.28906 , 0.29004 ) -> 2, 2.2513
|
||
|
297 [0.29004 , 0.29102 ) -> 2, 2.2605
|
||
|
298 [0.29102 , 0.29199 ) -> 2, 2.2696
|
||
|
299 [0.29199 , 0.29297 ) -> 2, 2.2788
|
||
|
300 [0.29297 , 0.29395 ) -> 2, 2.2879
|
||
|
301 [0.29395 , 0.29492 ) -> 2, 2.2971
|
||
|
302 [0.29492 , 0.2959 ) -> 2, 2.3062
|
||
|
303 [0.2959 , 0.29688 ) -> 2, 2.3154
|
||
|
304 [0.29688 , 0.29785 ) -> 2, 2.3246
|
||
|
305 [0.29785 , 0.29883 ) -> 2, 2.3337
|
||
|
306 [0.29883 , 0.2998 ) -> 2, 2.3429
|
||
|
307 [0.2998 , 0.30078 ) -> 2, 2.3521
|
||
|
308 [0.30078 , 0.30176 ) -> 2, 2.3613
|
||
|
309 [0.30176 , 0.30273 ) -> 2, 2.3705
|
||
|
310 [0.30273 , 0.30371 ) -> 2, 2.3797
|
||
|
311 [0.30371 , 0.30469 ) -> 2, 2.3889
|
||
|
312 [0.30469 , 0.30566 ) -> 2, 2.3982
|
||
|
313 [0.30566 , 0.30664 ) -> 2, 2.4074
|
||
|
314 [0.30664 , 0.30762 ) -> 2, 2.4166
|
||
|
315 [0.30762 , 0.30859 ) -> 2, 2.4259
|
||
|
316 [0.30859 , 0.30957 ) -> 2, 2.4351
|
||
|
317 [0.30957 , 0.31055 ) -> 2, 2.4443
|
||
|
318 [0.31055 , 0.31152 ) -> 2, 2.4536
|
||
|
319 [0.31152 , 0.3125 ) -> 2, 2.4629
|
||
|
320 [0.3125 , 0.31348 ) -> 2, 2.4721
|
||
|
321 [0.31348 , 0.31445 ) -> 2, 2.4814
|
||
|
322 [0.31445 , 0.31543 ) -> 2, 2.4907
|
||
|
323 [0.31543 , 0.31641 ) -> 2, 2.5
|
||
|
324 [0.31641 , 0.31738 ) -> 2, 2.5093
|
||
|
325 [0.31738 , 0.31836 ) -> 2, 2.5186
|
||
|
326 [0.31836 , 0.31934 ) -> 2, 2.5279
|
||
|
327 [0.31934 , 0.32031 ) -> 2, 2.5372
|
||
|
328 [0.32031 , 0.32129 ) -> 2, 2.5465
|
||
|
329 [0.32129 , 0.32227 ) -> 2, 2.5558
|
||
|
330 [0.32227 , 0.32324 ) -> 2, 2.5651
|
||
|
331 [0.32324 , 0.32422 ) -> 2, 2.5745
|
||
|
332 [0.32422 , 0.3252 ) -> 2, 2.5838
|
||
|
333 [0.3252 , 0.32617 ) -> 2, 2.5931
|
||
|
334 [0.32617 , 0.32715 ) -> 2, 2.6025
|
||
|
335 [0.32715 , 0.32813 ) -> 2, 2.6118
|
||
|
336 [0.32813 , 0.3291 ) -> 2, 2.6212
|
||
|
337 [0.3291 , 0.33008 ) -> 2, 2.6306
|
||
|
338 [0.33008 , 0.33105 ) -> 2, 2.6399
|
||
|
339 [0.33105 , 0.33203 ) -> 2, 2.6493
|
||
|
340 [0.33203 , 0.33301 ) -> 2, 2.6587
|
||
|
341 [0.33301 , 0.33398 ) -> 2, 2.6681
|
||
|
342 [0.33398 , 0.33496 ) -> 2, 2.6775
|
||
|
343 [0.33496 , 0.33594 ) -> 2, 2.6869
|
||
|
344 [0.33594 , 0.33691 ) -> 2, 2.6963
|
||
|
345 [0.33691 , 0.33789 ) -> 2, 2.7057
|
||
|
346 [0.33789 , 0.33887 ) -> 2, 2.7151
|
||
|
347 [0.33887 , 0.33984 ) -> 2, 2.7245
|
||
|
348 [0.33984 , 0.34082 ) -> 2, 2.7339
|
||
|
349 [0.34082 , 0.3418 ) -> 2, 2.7434
|
||
|
350 [0.3418 , 0.34277 ) -> 2, 2.7528
|
||
|
351 [0.34277 , 0.34375 ) -> 2, 2.7622
|
||
|
352 [0.34375 , 0.34473 ) -> 2, 2.7717
|
||
|
353 [0.34473 , 0.3457 ) -> 2, 2.7811
|
||
|
354 [0.3457 , 0.34668 ) -> 2, 2.7906
|
||
|
355 [0.34668 , 0.34766 ) -> 2, 2.8001
|
||
|
356 [0.34766 , 0.34863 ) -> 2, 2.8095
|
||
|
357 [0.34863 , 0.34961 ) -> 2, 2.819
|
||
|
358 [0.34961 , 0.35059 ) -> 2, 2.8285
|
||
|
359 [0.35059 , 0.35156 ) -> 2, 2.838
|
||
|
360 [0.35156 , 0.35254 ) -> 2, 2.8474
|
||
|
361 [0.35254 , 0.35352 ) -> 2, 2.8569
|
||
|
362 [0.35352 , 0.35449 ) -> 2, 2.8664
|
||
|
363 [0.35449 , 0.35547 ) -> 2, 2.8759
|
||
|
364 [0.35547 , 0.35645 ) -> 2, 2.8854
|
||
|
365 [0.35645 , 0.35742 ) -> 2, 2.895
|
||
|
366 [0.35742 , 0.3584 ) -> 2, 2.9045
|
||
|
367 [0.3584 , 0.35938 ) -> 2, 2.914
|
||
|
368 [0.35938 , 0.36035 ) -> 2, 2.9235
|
||
|
369 [0.36035 , 0.36133 ) -> 2, 2.9331
|
||
|
370 [0.36133 , 0.3623 ) -> 2, 2.9426
|
||
|
371 [0.3623 , 0.36328 ) -> 2, 2.9522
|
||
|
372 [0.36328 , 0.36426 ) -> 2, 2.9617
|
||
|
373 [0.36426 , 0.36523 ) -> 2, 2.9713
|
||
|
374 [0.36523 , 0.36621 ) -> 2, 2.9808
|
||
|
375 [0.36621 , 0.36719 ) -> 2, 2.9904
|
||
|
376 [0.36719 , 0.36816 ) -> 2, 3
|
||
|
377 [0.36816 , 0.36914 ) -> 3, 3.0095
|
||
|
378 [0.36914 , 0.37012 ) -> 3, 3.0191
|
||
|
379 [0.37012 , 0.37109 ) -> 3, 3.0287
|
||
|
380 [0.37109 , 0.37207 ) -> 3, 3.0383
|
||
|
381 [0.37207 , 0.37305 ) -> 3, 3.0479
|
||
|
382 [0.37305 , 0.37402 ) -> 3, 3.0575
|
||
|
383 [0.37402 , 0.375 ) -> 3, 3.0671
|
||
|
384 [0.375 , 0.37598 ) -> 3, 3.0767
|
||
|
385 [0.37598 , 0.37695 ) -> 3, 3.0863
|
||
|
386 [0.37695 , 0.37793 ) -> 3, 3.096
|
||
|
387 [0.37793 , 0.37891 ) -> 3, 3.1056
|
||
|
388 [0.37891 , 0.37988 ) -> 3, 3.1152
|
||
|
389 [0.37988 , 0.38086 ) -> 3, 3.1249
|
||
|
390 [0.38086 , 0.38184 ) -> 3, 3.1345
|
||
|
391 [0.38184 , 0.38281 ) -> 3, 3.1442
|
||
|
392 [0.38281 , 0.38379 ) -> 3, 3.1538
|
||
|
393 [0.38379 , 0.38477 ) -> 3, 3.1635
|
||
|
394 [0.38477 , 0.38574 ) -> 3, 3.1731
|
||
|
395 [0.38574 , 0.38672 ) -> 3, 3.1828
|
||
|
396 [0.38672 , 0.3877 ) -> 3, 3.1925
|
||
|
397 [0.3877 , 0.38867 ) -> 3, 3.2021
|
||
|
398 [0.38867 , 0.38965 ) -> 3, 3.2118
|
||
|
399 [0.38965 , 0.39063 ) -> 3, 3.2215
|
||
|
400 [0.39063 , 0.3916 ) -> 3, 3.2312
|
||
|
401 [0.3916 , 0.39258 ) -> 3, 3.2409
|
||
|
402 [0.39258 , 0.39355 ) -> 3, 3.2506
|
||
|
403 [0.39355 , 0.39453 ) -> 3, 3.2603
|
||
|
404 [0.39453 , 0.39551 ) -> 3, 3.27
|
||
|
405 [0.39551 , 0.39648 ) -> 3, 3.2797
|
||
|
406 [0.39648 , 0.39746 ) -> 3, 3.2894
|
||
|
407 [0.39746 , 0.39844 ) -> 3, 3.2992
|
||
|
408 [0.39844 , 0.39941 ) -> 3, 3.3089
|
||
|
409 [0.39941 , 0.40039 ) -> 3, 3.3186
|
||
|
410 [0.40039 , 0.40137 ) -> 3, 3.3284
|
||
|
411 [0.40137 , 0.40234 ) -> 3, 3.3381
|
||
|
412 [0.40234 , 0.40332 ) -> 3, 3.3479
|
||
|
413 [0.40332 , 0.4043 ) -> 3, 3.3576
|
||
|
414 [0.4043 , 0.40527 ) -> 3, 3.3674
|
||
|
415 [0.40527 , 0.40625 ) -> 3, 3.3771
|
||
|
416 [0.40625 , 0.40723 ) -> 3, 3.3869
|
||
|
417 [0.40723 , 0.4082 ) -> 3, 3.3967
|
||
|
418 [0.4082 , 0.40918 ) -> 3, 3.4065
|
||
|
419 [0.40918 , 0.41016 ) -> 3, 3.4162
|
||
|
420 [0.41016 , 0.41113 ) -> 3, 3.426
|
||
|
421 [0.41113 , 0.41211 ) -> 3, 3.4358
|
||
|
422 [0.41211 , 0.41309 ) -> 3, 3.4456
|
||
|
423 [0.41309 , 0.41406 ) -> 3, 3.4554
|
||
|
424 [0.41406 , 0.41504 ) -> 3, 3.4652
|
||
|
425 [0.41504 , 0.41602 ) -> 3, 3.475
|
||
|
426 [0.41602 , 0.41699 ) -> 3, 3.4848
|
||
|
427 [0.41699 , 0.41797 ) -> 3, 3.4947
|
||
|
428 [0.41797 , 0.41895 ) -> 3, 3.5045
|
||
|
429 [0.41895 , 0.41992 ) -> 3, 3.5143
|
||
|
430 [0.41992 , 0.4209 ) -> 3, 3.5241
|
||
|
431 [0.4209 , 0.42188 ) -> 3, 3.534
|
||
|
432 [0.42188 , 0.42285 ) -> 3, 3.5438
|
||
|
433 [0.42285 , 0.42383 ) -> 3, 3.5537
|
||
|
434 [0.42383 , 0.4248 ) -> 3, 3.5635
|
||
|
435 [0.4248 , 0.42578 ) -> 3, 3.5734
|
||
|
436 [0.42578 , 0.42676 ) -> 3, 3.5832
|
||
|
437 [0.42676 , 0.42773 ) -> 3, 3.5931
|
||
|
438 [0.42773 , 0.42871 ) -> 3, 3.603
|
||
|
439 [0.42871 , 0.42969 ) -> 3, 3.6128
|
||
|
440 [0.42969 , 0.43066 ) -> 3, 3.6227
|
||
|
441 [0.43066 , 0.43164 ) -> 3, 3.6326
|
||
|
442 [0.43164 , 0.43262 ) -> 3, 3.6425
|
||
|
443 [0.43262 , 0.43359 ) -> 3, 3.6524
|
||
|
444 [0.43359 , 0.43457 ) -> 3, 3.6623
|
||
|
445 [0.43457 , 0.43555 ) -> 3, 3.6722
|
||
|
446 [0.43555 , 0.43652 ) -> 3, 3.6821
|
||
|
447 [0.43652 , 0.4375 ) -> 3, 3.692
|
||
|
448 [0.4375 , 0.43848 ) -> 3, 3.7019
|
||
|
449 [0.43848 , 0.43945 ) -> 3, 3.7118
|
||
|
450 [0.43945 , 0.44043 ) -> 3, 3.7217
|
||
|
451 [0.44043 , 0.44141 ) -> 3, 3.7317
|
||
|
452 [0.44141 , 0.44238 ) -> 3, 3.7416
|
||
|
453 [0.44238 , 0.44336 ) -> 3, 3.7515
|
||
|
454 [0.44336 , 0.44434 ) -> 3, 3.7615
|
||
|
455 [0.44434 , 0.44531 ) -> 3, 3.7714
|
||
|
456 [0.44531 , 0.44629 ) -> 3, 3.7814
|
||
|
457 [0.44629 , 0.44727 ) -> 3, 3.7913
|
||
|
458 [0.44727 , 0.44824 ) -> 3, 3.8013
|
||
|
459 [0.44824 , 0.44922 ) -> 3, 3.8112
|
||
|
460 [0.44922 , 0.4502 ) -> 3, 3.8212
|
||
|
461 [0.4502 , 0.45117 ) -> 3, 3.8312
|
||
|
462 [0.45117 , 0.45215 ) -> 3, 3.8412
|
||
|
463 [0.45215 , 0.45313 ) -> 3, 3.8511
|
||
|
464 [0.45313 , 0.4541 ) -> 3, 3.8611
|
||
|
465 [0.4541 , 0.45508 ) -> 3, 3.8711
|
||
|
466 [0.45508 , 0.45605 ) -> 3, 3.8811
|
||
|
467 [0.45605 , 0.45703 ) -> 3, 3.8911
|
||
|
468 [0.45703 , 0.45801 ) -> 3, 3.9011
|
||
|
469 [0.45801 , 0.45898 ) -> 3, 3.9111
|
||
|
470 [0.45898 , 0.45996 ) -> 3, 3.9211
|
||
|
471 [0.45996 , 0.46094 ) -> 3, 3.9311
|
||
|
472 [0.46094 , 0.46191 ) -> 3, 3.9411
|
||
|
473 [0.46191 , 0.46289 ) -> 3, 3.9512
|
||
|
474 [0.46289 , 0.46387 ) -> 3, 3.9612
|
||
|
475 [0.46387 , 0.46484 ) -> 3, 3.9712
|
||
|
476 [0.46484 , 0.46582 ) -> 3, 3.9813
|
||
|
477 [0.46582 , 0.4668 ) -> 3, 3.9913
|
||
|
478 [0.4668 , 0.46777 ) -> 4, 4.0013
|
||
|
479 [0.46777 , 0.46875 ) -> 4, 4.0114
|
||
|
480 [0.46875 , 0.46973 ) -> 4, 4.0214
|
||
|
481 [0.46973 , 0.4707 ) -> 4, 4.0315
|
||
|
482 [0.4707 , 0.47168 ) -> 4, 4.0416
|
||
|
483 [0.47168 , 0.47266 ) -> 4, 4.0516
|
||
|
484 [0.47266 , 0.47363 ) -> 4, 4.0617
|
||
|
485 [0.47363 , 0.47461 ) -> 4, 4.0718
|
||
|
486 [0.47461 , 0.47559 ) -> 4, 4.0818
|
||
|
487 [0.47559 , 0.47656 ) -> 4, 4.0919
|
||
|
488 [0.47656 , 0.47754 ) -> 4, 4.102
|
||
|
489 [0.47754 , 0.47852 ) -> 4, 4.1121
|
||
|
490 [0.47852 , 0.47949 ) -> 4, 4.1222
|
||
|
491 [0.47949 , 0.48047 ) -> 4, 4.1323
|
||
|
492 [0.48047 , 0.48145 ) -> 4, 4.1424
|
||
|
493 [0.48145 , 0.48242 ) -> 4, 4.1525
|
||
|
494 [0.48242 , 0.4834 ) -> 4, 4.1626
|
||
|
495 [0.4834 , 0.48438 ) -> 4, 4.1727
|
||
|
496 [0.48438 , 0.48535 ) -> 4, 4.1828
|
||
|
497 [0.48535 , 0.48633 ) -> 4, 4.1929
|
||
|
498 [0.48633 , 0.4873 ) -> 4, 4.2031
|
||
|
499 [0.4873 , 0.48828 ) -> 4, 4.2132
|
||
|
500 [0.48828 , 0.48926 ) -> 4, 4.2233
|
||
|
501 [0.48926 , 0.49023 ) -> 4, 4.2335
|
||
|
502 [0.49023 , 0.49121 ) -> 4, 4.2436
|
||
|
503 [0.49121 , 0.49219 ) -> 4, 4.2538
|
||
|
504 [0.49219 , 0.49316 ) -> 4, 4.2639
|
||
|
505 [0.49316 , 0.49414 ) -> 4, 4.2741
|
||
|
506 [0.49414 , 0.49512 ) -> 4, 4.2842
|
||
|
507 [0.49512 , 0.49609 ) -> 4, 4.2944
|
||
|
508 [0.49609 , 0.49707 ) -> 4, 4.3046
|
||
|
509 [0.49707 , 0.49805 ) -> 4, 4.3147
|
||
|
510 [0.49805 , 0.49902 ) -> 4, 4.3249
|
||
|
511 [0.49902 , 0.5 ) -> 4, 4.3351
|
||
|
512 [0.5 , 0.50098 ) -> 4, 4.3453
|
||
|
513 [0.50098 , 0.50195 ) -> 4, 4.3554
|
||
|
514 [0.50195 , 0.50293 ) -> 4, 4.3656
|
||
|
515 [0.50293 , 0.50391 ) -> 4, 4.3758
|
||
|
516 [0.50391 , 0.50488 ) -> 4, 4.386
|
||
|
517 [0.50488 , 0.50586 ) -> 4, 4.3962
|
||
|
518 [0.50586 , 0.50684 ) -> 4, 4.4064
|
||
|
519 [0.50684 , 0.50781 ) -> 4, 4.4166
|
||
|
520 [0.50781 , 0.50879 ) -> 4, 4.4269
|
||
|
521 [0.50879 , 0.50977 ) -> 4, 4.4371
|
||
|
522 [0.50977 , 0.51074 ) -> 4, 4.4473
|
||
|
523 [0.51074 , 0.51172 ) -> 4, 4.4575
|
||
|
524 [0.51172 , 0.5127 ) -> 4, 4.4678
|
||
|
525 [0.5127 , 0.51367 ) -> 4, 4.478
|
||
|
526 [0.51367 , 0.51465 ) -> 4, 4.4882
|
||
|
527 [0.51465 , 0.51563 ) -> 4, 4.4985
|
||
|
528 [0.51563 , 0.5166 ) -> 4, 4.5087
|
||
|
529 [0.5166 , 0.51758 ) -> 4, 4.519
|
||
|
530 [0.51758 , 0.51855 ) -> 4, 4.5292
|
||
|
531 [0.51855 , 0.51953 ) -> 4, 4.5395
|
||
|
532 [0.51953 , 0.52051 ) -> 4, 4.5497
|
||
|
533 [0.52051 , 0.52148 ) -> 4, 4.56
|
||
|
534 [0.52148 , 0.52246 ) -> 4, 4.5703
|
||
|
535 [0.52246 , 0.52344 ) -> 4, 4.5805
|
||
|
536 [0.52344 , 0.52441 ) -> 4, 4.5908
|
||
|
537 [0.52441 , 0.52539 ) -> 4, 4.6011
|
||
|
538 [0.52539 , 0.52637 ) -> 4, 4.6114
|
||
|
539 [0.52637 , 0.52734 ) -> 4, 4.6217
|
||
|
540 [0.52734 , 0.52832 ) -> 4, 4.632
|
||
|
541 [0.52832 , 0.5293 ) -> 4, 4.6423
|
||
|
542 [0.5293 , 0.53027 ) -> 4, 4.6525
|
||
|
543 [0.53027 , 0.53125 ) -> 4, 4.6629
|
||
|
544 [0.53125 , 0.53223 ) -> 4, 4.6732
|
||
|
545 [0.53223 , 0.5332 ) -> 4, 4.6835
|
||
|
546 [0.5332 , 0.53418 ) -> 4, 4.6938
|
||
|
547 [0.53418 , 0.53516 ) -> 4, 4.7041
|
||
|
548 [0.53516 , 0.53613 ) -> 4, 4.7144
|
||
|
549 [0.53613 , 0.53711 ) -> 4, 4.7247
|
||
|
550 [0.53711 , 0.53809 ) -> 4, 4.7351
|
||
|
551 [0.53809 , 0.53906 ) -> 4, 4.7454
|
||
|
552 [0.53906 , 0.54004 ) -> 4, 4.7557
|
||
|
553 [0.54004 , 0.54102 ) -> 4, 4.7661
|
||
|
554 [0.54102 , 0.54199 ) -> 4, 4.7764
|
||
|
555 [0.54199 , 0.54297 ) -> 4, 4.7868
|
||
|
556 [0.54297 , 0.54395 ) -> 4, 4.7971
|
||
|
557 [0.54395 , 0.54492 ) -> 4, 4.8075
|
||
|
558 [0.54492 , 0.5459 ) -> 4, 4.8178
|
||
|
559 [0.5459 , 0.54688 ) -> 4, 4.8282
|
||
|
560 [0.54688 , 0.54785 ) -> 4, 4.8386
|
||
|
561 [0.54785 , 0.54883 ) -> 4, 4.8489
|
||
|
562 [0.54883 , 0.5498 ) -> 4, 4.8593
|
||
|
563 [0.5498 , 0.55078 ) -> 4, 4.8697
|
||
|
564 [0.55078 , 0.55176 ) -> 4, 4.8801
|
||
|
565 [0.55176 , 0.55273 ) -> 4, 4.8905
|
||
|
566 [0.55273 , 0.55371 ) -> 4, 4.9009
|
||
|
567 [0.55371 , 0.55469 ) -> 4, 4.9112
|
||
|
568 [0.55469 , 0.55566 ) -> 4, 4.9216
|
||
|
569 [0.55566 , 0.55664 ) -> 4, 4.932
|
||
|
570 [0.55664 , 0.55762 ) -> 4, 4.9424
|
||
|
571 [0.55762 , 0.55859 ) -> 4, 4.9529
|
||
|
572 [0.55859 , 0.55957 ) -> 4, 4.9633
|
||
|
573 [0.55957 , 0.56055 ) -> 4, 4.9737
|
||
|
574 [0.56055 , 0.56152 ) -> 4, 4.9841
|
||
|
575 [0.56152 , 0.5625 ) -> 4, 4.9945
|
||
|
576 [0.5625 , 0.56348 ) -> 5, 5.0049
|
||
|
577 [0.56348 , 0.56445 ) -> 5, 5.0154
|
||
|
578 [0.56445 , 0.56543 ) -> 5, 5.0258
|
||
|
579 [0.56543 , 0.56641 ) -> 5, 5.0362
|
||
|
580 [0.56641 , 0.56738 ) -> 5, 5.0467
|
||
|
581 [0.56738 , 0.56836 ) -> 5, 5.0571
|
||
|
582 [0.56836 , 0.56934 ) -> 5, 5.0676
|
||
|
583 [0.56934 , 0.57031 ) -> 5, 5.078
|
||
|
584 [0.57031 , 0.57129 ) -> 5, 5.0885
|
||
|
585 [0.57129 , 0.57227 ) -> 5, 5.0989
|
||
|
586 [0.57227 , 0.57324 ) -> 5, 5.1094
|
||
|
587 [0.57324 , 0.57422 ) -> 5, 5.1199
|
||
|
588 [0.57422 , 0.5752 ) -> 5, 5.1303
|
||
|
589 [0.5752 , 0.57617 ) -> 5, 5.1408
|
||
|
590 [0.57617 , 0.57715 ) -> 5, 5.1513
|
||
|
591 [0.57715 , 0.57813 ) -> 5, 5.1617
|
||
|
592 [0.57813 , 0.5791 ) -> 5, 5.1722
|
||
|
593 [0.5791 , 0.58008 ) -> 5, 5.1827
|
||
|
594 [0.58008 , 0.58105 ) -> 5, 5.1932
|
||
|
595 [0.58105 , 0.58203 ) -> 5, 5.2037
|
||
|
596 [0.58203 , 0.58301 ) -> 5, 5.2142
|
||
|
597 [0.58301 , 0.58398 ) -> 5, 5.2247
|
||
|
598 [0.58398 , 0.58496 ) -> 5, 5.2352
|
||
|
599 [0.58496 , 0.58594 ) -> 5, 5.2457
|
||
|
600 [0.58594 , 0.58691 ) -> 5, 5.2562
|
||
|
601 [0.58691 , 0.58789 ) -> 5, 5.2667
|
||
|
602 [0.58789 , 0.58887 ) -> 5, 5.2773
|
||
|
603 [0.58887 , 0.58984 ) -> 5, 5.2878
|
||
|
604 [0.58984 , 0.59082 ) -> 5, 5.2983
|
||
|
605 [0.59082 , 0.5918 ) -> 5, 5.3088
|
||
|
606 [0.5918 , 0.59277 ) -> 5, 5.3194
|
||
|
607 [0.59277 , 0.59375 ) -> 5, 5.3299
|
||
|
608 [0.59375 , 0.59473 ) -> 5, 5.3404
|
||
|
609 [0.59473 , 0.5957 ) -> 5, 5.351
|
||
|
610 [0.5957 , 0.59668 ) -> 5, 5.3615
|
||
|
611 [0.59668 , 0.59766 ) -> 5, 5.3721
|
||
|
612 [0.59766 , 0.59863 ) -> 5, 5.3826
|
||
|
613 [0.59863 , 0.59961 ) -> 5, 5.3932
|
||
|
614 [0.59961 , 0.60059 ) -> 5, 5.4037
|
||
|
615 [0.60059 , 0.60156 ) -> 5, 5.4143
|
||
|
616 [0.60156 , 0.60254 ) -> 5, 5.4249
|
||
|
617 [0.60254 , 0.60352 ) -> 5, 5.4354
|
||
|
618 [0.60352 , 0.60449 ) -> 5, 5.446
|
||
|
619 [0.60449 , 0.60547 ) -> 5, 5.4566
|
||
|
620 [0.60547 , 0.60645 ) -> 5, 5.4672
|
||
|
621 [0.60645 , 0.60742 ) -> 5, 5.4777
|
||
|
622 [0.60742 , 0.6084 ) -> 5, 5.4883
|
||
|
623 [0.6084 , 0.60938 ) -> 5, 5.4989
|
||
|
624 [0.60938 , 0.61035 ) -> 5, 5.5095
|
||
|
625 [0.61035 , 0.61133 ) -> 5, 5.5201
|
||
|
626 [0.61133 , 0.6123 ) -> 5, 5.5307
|
||
|
627 [0.6123 , 0.61328 ) -> 5, 5.5413
|
||
|
628 [0.61328 , 0.61426 ) -> 5, 5.5519
|
||
|
629 [0.61426 , 0.61523 ) -> 5, 5.5625
|
||
|
630 [0.61523 , 0.61621 ) -> 5, 5.5731
|
||
|
631 [0.61621 , 0.61719 ) -> 5, 5.5838
|
||
|
632 [0.61719 , 0.61816 ) -> 5, 5.5944
|
||
|
633 [0.61816 , 0.61914 ) -> 5, 5.605
|
||
|
634 [0.61914 , 0.62012 ) -> 5, 5.6156
|
||
|
635 [0.62012 , 0.62109 ) -> 5, 5.6263
|
||
|
636 [0.62109 , 0.62207 ) -> 5, 5.6369
|
||
|
637 [0.62207 , 0.62305 ) -> 5, 5.6475
|
||
|
638 [0.62305 , 0.62402 ) -> 5, 5.6582
|
||
|
639 [0.62402 , 0.625 ) -> 5, 5.6688
|
||
|
640 [0.625 , 0.62598 ) -> 5, 5.6795
|
||
|
641 [0.62598 , 0.62695 ) -> 5, 5.6901
|
||
|
642 [0.62695 , 0.62793 ) -> 5, 5.7008
|
||
|
643 [0.62793 , 0.62891 ) -> 5, 5.7114
|
||
|
644 [0.62891 , 0.62988 ) -> 5, 5.7221
|
||
|
645 [0.62988 , 0.63086 ) -> 5, 5.7328
|
||
|
646 [0.63086 , 0.63184 ) -> 5, 5.7434
|
||
|
647 [0.63184 , 0.63281 ) -> 5, 5.7541
|
||
|
648 [0.63281 , 0.63379 ) -> 5, 5.7648
|
||
|
649 [0.63379 , 0.63477 ) -> 5, 5.7754
|
||
|
650 [0.63477 , 0.63574 ) -> 5, 5.7861
|
||
|
651 [0.63574 , 0.63672 ) -> 5, 5.7968
|
||
|
652 [0.63672 , 0.6377 ) -> 5, 5.8075
|
||
|
653 [0.6377 , 0.63867 ) -> 5, 5.8182
|
||
|
654 [0.63867 , 0.63965 ) -> 5, 5.8289
|
||
|
655 [0.63965 , 0.64063 ) -> 5, 5.8396
|
||
|
656 [0.64063 , 0.6416 ) -> 5, 5.8503
|
||
|
657 [0.6416 , 0.64258 ) -> 5, 5.861
|
||
|
658 [0.64258 , 0.64355 ) -> 5, 5.8717
|
||
|
659 [0.64355 , 0.64453 ) -> 5, 5.8824
|
||
|
660 [0.64453 , 0.64551 ) -> 5, 5.8931
|
||
|
661 [0.64551 , 0.64648 ) -> 5, 5.9038
|
||
|
662 [0.64648 , 0.64746 ) -> 5, 5.9145
|
||
|
663 [0.64746 , 0.64844 ) -> 5, 5.9253
|
||
|
664 [0.64844 , 0.64941 ) -> 5, 5.936
|
||
|
665 [0.64941 , 0.65039 ) -> 5, 5.9467
|
||
|
666 [0.65039 , 0.65137 ) -> 5, 5.9575
|
||
|
667 [0.65137 , 0.65234 ) -> 5, 5.9682
|
||
|
668 [0.65234 , 0.65332 ) -> 5, 5.9789
|
||
|
669 [0.65332 , 0.6543 ) -> 5, 5.9897
|
||
|
670 [0.6543 , 0.65527 ) -> 6, 6.0004
|
||
|
671 [0.65527 , 0.65625 ) -> 6, 6.0112
|
||
|
672 [0.65625 , 0.65723 ) -> 6, 6.0219
|
||
|
673 [0.65723 , 0.6582 ) -> 6, 6.0327
|
||
|
674 [0.6582 , 0.65918 ) -> 6, 6.0434
|
||
|
675 [0.65918 , 0.66016 ) -> 6, 6.0542
|
||
|
676 [0.66016 , 0.66113 ) -> 6, 6.065
|
||
|
677 [0.66113 , 0.66211 ) -> 6, 6.0757
|
||
|
678 [0.66211 , 0.66309 ) -> 6, 6.0865
|
||
|
679 [0.66309 , 0.66406 ) -> 6, 6.0973
|
||
|
680 [0.66406 , 0.66504 ) -> 6, 6.1081
|
||
|
681 [0.66504 , 0.66602 ) -> 6, 6.1188
|
||
|
682 [0.66602 , 0.66699 ) -> 6, 6.1296
|
||
|
683 [0.66699 , 0.66797 ) -> 6, 6.1404
|
||
|
684 [0.66797 , 0.66895 ) -> 6, 6.1512
|
||
|
685 [0.66895 , 0.66992 ) -> 6, 6.162
|
||
|
686 [0.66992 , 0.6709 ) -> 6, 6.1728
|
||
|
687 [0.6709 , 0.67188 ) -> 6, 6.1836
|
||
|
688 [0.67188 , 0.67285 ) -> 6, 6.1944
|
||
|
689 [0.67285 , 0.67383 ) -> 6, 6.2052
|
||
|
690 [0.67383 , 0.6748 ) -> 6, 6.216
|
||
|
691 [0.6748 , 0.67578 ) -> 6, 6.2268
|
||
|
692 [0.67578 , 0.67676 ) -> 6, 6.2376
|
||
|
693 [0.67676 , 0.67773 ) -> 6, 6.2484
|
||
|
694 [0.67773 , 0.67871 ) -> 6, 6.2593
|
||
|
695 [0.67871 , 0.67969 ) -> 6, 6.2701
|
||
|
696 [0.67969 , 0.68066 ) -> 6, 6.2809
|
||
|
697 [0.68066 , 0.68164 ) -> 6, 6.2917
|
||
|
698 [0.68164 , 0.68262 ) -> 6, 6.3026
|
||
|
699 [0.68262 , 0.68359 ) -> 6, 6.3134
|
||
|
700 [0.68359 , 0.68457 ) -> 6, 6.3243
|
||
|
701 [0.68457 , 0.68555 ) -> 6, 6.3351
|
||
|
702 [0.68555 , 0.68652 ) -> 6, 6.3459
|
||
|
703 [0.68652 , 0.6875 ) -> 6, 6.3568
|
||
|
704 [0.6875 , 0.68848 ) -> 6, 6.3676
|
||
|
705 [0.68848 , 0.68945 ) -> 6, 6.3785
|
||
|
706 [0.68945 , 0.69043 ) -> 6, 6.3894
|
||
|
707 [0.69043 , 0.69141 ) -> 6, 6.4002
|
||
|
708 [0.69141 , 0.69238 ) -> 6, 6.4111
|
||
|
709 [0.69238 , 0.69336 ) -> 6, 6.422
|
||
|
710 [0.69336 , 0.69434 ) -> 6, 6.4328
|
||
|
711 [0.69434 , 0.69531 ) -> 6, 6.4437
|
||
|
712 [0.69531 , 0.69629 ) -> 6, 6.4546
|
||
|
713 [0.69629 , 0.69727 ) -> 6, 6.4655
|
||
|
714 [0.69727 , 0.69824 ) -> 6, 6.4763
|
||
|
715 [0.69824 , 0.69922 ) -> 6, 6.4872
|
||
|
716 [0.69922 , 0.7002 ) -> 6, 6.4981
|
||
|
717 [0.7002 , 0.70117 ) -> 6, 6.509
|
||
|
718 [0.70117 , 0.70215 ) -> 6, 6.5199
|
||
|
719 [0.70215 , 0.70313 ) -> 6, 6.5308
|
||
|
720 [0.70313 , 0.7041 ) -> 6, 6.5417
|
||
|
721 [0.7041 , 0.70508 ) -> 6, 6.5526
|
||
|
722 [0.70508 , 0.70605 ) -> 6, 6.5635
|
||
|
723 [0.70605 , 0.70703 ) -> 6, 6.5744
|
||
|
724 [0.70703 , 0.70801 ) -> 6, 6.5853
|
||
|
725 [0.70801 , 0.70898 ) -> 6, 6.5963
|
||
|
726 [0.70898 , 0.70996 ) -> 6, 6.6072
|
||
|
727 [0.70996 , 0.71094 ) -> 6, 6.6181
|
||
|
728 [0.71094 , 0.71191 ) -> 6, 6.629
|
||
|
729 [0.71191 , 0.71289 ) -> 6, 6.64
|
||
|
730 [0.71289 , 0.71387 ) -> 6, 6.6509
|
||
|
731 [0.71387 , 0.71484 ) -> 6, 6.6618
|
||
|
732 [0.71484 , 0.71582 ) -> 6, 6.6728
|
||
|
733 [0.71582 , 0.7168 ) -> 6, 6.6837
|
||
|
734 [0.7168 , 0.71777 ) -> 6, 6.6946
|
||
|
735 [0.71777 , 0.71875 ) -> 6, 6.7056
|
||
|
736 [0.71875 , 0.71973 ) -> 6, 6.7165
|
||
|
737 [0.71973 , 0.7207 ) -> 6, 6.7275
|
||
|
738 [0.7207 , 0.72168 ) -> 6, 6.7384
|
||
|
739 [0.72168 , 0.72266 ) -> 6, 6.7494
|
||
|
740 [0.72266 , 0.72363 ) -> 6, 6.7604
|
||
|
741 [0.72363 , 0.72461 ) -> 6, 6.7713
|
||
|
742 [0.72461 , 0.72559 ) -> 6, 6.7823
|
||
|
743 [0.72559 , 0.72656 ) -> 6, 6.7933
|
||
|
744 [0.72656 , 0.72754 ) -> 6, 6.8042
|
||
|
745 [0.72754 , 0.72852 ) -> 6, 6.8152
|
||
|
746 [0.72852 , 0.72949 ) -> 6, 6.8262
|
||
|
747 [0.72949 , 0.73047 ) -> 6, 6.8372
|
||
|
748 [0.73047 , 0.73145 ) -> 6, 6.8482
|
||
|
749 [0.73145 , 0.73242 ) -> 6, 6.8591
|
||
|
750 [0.73242 , 0.7334 ) -> 6, 6.8701
|
||
|
751 [0.7334 , 0.73438 ) -> 6, 6.8811
|
||
|
752 [0.73438 , 0.73535 ) -> 6, 6.8921
|
||
|
753 [0.73535 , 0.73633 ) -> 6, 6.9031
|
||
|
754 [0.73633 , 0.7373 ) -> 6, 6.9141
|
||
|
755 [0.7373 , 0.73828 ) -> 6, 6.9251
|
||
|
756 [0.73828 , 0.73926 ) -> 6, 6.9361
|
||
|
757 [0.73926 , 0.74023 ) -> 6, 6.9472
|
||
|
758 [0.74023 , 0.74121 ) -> 6, 6.9582
|
||
|
759 [0.74121 , 0.74219 ) -> 6, 6.9692
|
||
|
760 [0.74219 , 0.74316 ) -> 6, 6.9802
|
||
|
761 [0.74316 , 0.74414 ) -> 6, 6.9912
|
||
|
762 [0.74414 , 0.74512 ) -> 7, 6.999
|
||
|
763 [0.74512 , 0.74609 ) -> 7, 6.999
|
||
|
764 [0.74609 , 0.74707 ) -> 7, 6.999
|
||
|
765 [0.74707 , 0.74805 ) -> 7, 6.999
|
||
|
766 [0.74805 , 0.74902 ) -> 7, 6.999
|
||
|
767 [0.74902 , 0.75 ) -> 7, 6.999
|
||
|
768 [0.75 , 0.75098 ) -> 7, 6.999
|
||
|
769 [0.75098 , 0.75195 ) -> 7, 6.999
|
||
|
770 [0.75195 , 0.75293 ) -> 7, 6.999
|
||
|
771 [0.75293 , 0.75391 ) -> 7, 6.999
|
||
|
772 [0.75391 , 0.75488 ) -> 7, 6.999
|
||
|
773 [0.75488 , 0.75586 ) -> 7, 6.999
|
||
|
774 [0.75586 , 0.75684 ) -> 7, 6.999
|
||
|
775 [0.75684 , 0.75781 ) -> 7, 6.999
|
||
|
776 [0.75781 , 0.75879 ) -> 7, 6.999
|
||
|
777 [0.75879 , 0.75977 ) -> 7, 6.999
|
||
|
778 [0.75977 , 0.76074 ) -> 7, 6.999
|
||
|
779 [0.76074 , 0.76172 ) -> 7, 6.999
|
||
|
780 [0.76172 , 0.7627 ) -> 7, 6.999
|
||
|
781 [0.7627 , 0.76367 ) -> 7, 6.999
|
||
|
782 [0.76367 , 0.76465 ) -> 7, 6.999
|
||
|
783 [0.76465 , 0.76563 ) -> 7, 6.999
|
||
|
784 [0.76563 , 0.7666 ) -> 7, 6.999
|
||
|
785 [0.7666 , 0.76758 ) -> 7, 6.999
|
||
|
786 [0.76758 , 0.76855 ) -> 7, 6.999
|
||
|
787 [0.76855 , 0.76953 ) -> 7, 6.999
|
||
|
788 [0.76953 , 0.77051 ) -> 7, 6.999
|
||
|
789 [0.77051 , 0.77148 ) -> 7, 6.999
|
||
|
790 [0.77148 , 0.77246 ) -> 7, 6.999
|
||
|
791 [0.77246 , 0.77344 ) -> 7, 6.999
|
||
|
792 [0.77344 , 0.77441 ) -> 7, 6.999
|
||
|
793 [0.77441 , 0.77539 ) -> 7, 6.999
|
||
|
794 [0.77539 , 0.77637 ) -> 7, 6.999
|
||
|
795 [0.77637 , 0.77734 ) -> 7, 6.999
|
||
|
796 [0.77734 , 0.77832 ) -> 7, 6.999
|
||
|
797 [0.77832 , 0.7793 ) -> 7, 6.999
|
||
|
798 [0.7793 , 0.78027 ) -> 7, 6.999
|
||
|
799 [0.78027 , 0.78125 ) -> 7, 6.999
|
||
|
800 [0.78125 , 0.78223 ) -> 7, 6.999
|
||
|
801 [0.78223 , 0.7832 ) -> 7, 6.999
|
||
|
802 [0.7832 , 0.78418 ) -> 7, 6.999
|
||
|
803 [0.78418 , 0.78516 ) -> 7, 6.999
|
||
|
804 [0.78516 , 0.78613 ) -> 7, 6.999
|
||
|
805 [0.78613 , 0.78711 ) -> 7, 6.999
|
||
|
806 [0.78711 , 0.78809 ) -> 7, 6.999
|
||
|
807 [0.78809 , 0.78906 ) -> 7, 6.999
|
||
|
808 [0.78906 , 0.79004 ) -> 7, 6.999
|
||
|
809 [0.79004 , 0.79102 ) -> 7, 6.999
|
||
|
810 [0.79102 , 0.79199 ) -> 7, 6.999
|
||
|
811 [0.79199 , 0.79297 ) -> 7, 6.999
|
||
|
812 [0.79297 , 0.79395 ) -> 7, 6.999
|
||
|
813 [0.79395 , 0.79492 ) -> 7, 6.999
|
||
|
814 [0.79492 , 0.7959 ) -> 7, 6.999
|
||
|
815 [0.7959 , 0.79688 ) -> 7, 6.999
|
||
|
816 [0.79688 , 0.79785 ) -> 7, 6.999
|
||
|
817 [0.79785 , 0.79883 ) -> 7, 6.999
|
||
|
818 [0.79883 , 0.7998 ) -> 7, 6.999
|
||
|
819 [0.7998 , 0.80078 ) -> 7, 6.999
|
||
|
820 [0.80078 , 0.80176 ) -> 7, 6.999
|
||
|
821 [0.80176 , 0.80273 ) -> 7, 6.999
|
||
|
822 [0.80273 , 0.80371 ) -> 7, 6.999
|
||
|
823 [0.80371 , 0.80469 ) -> 7, 6.999
|
||
|
824 [0.80469 , 0.80566 ) -> 7, 6.999
|
||
|
825 [0.80566 , 0.80664 ) -> 7, 6.999
|
||
|
826 [0.80664 , 0.80762 ) -> 7, 6.999
|
||
|
827 [0.80762 , 0.80859 ) -> 7, 6.999
|
||
|
828 [0.80859 , 0.80957 ) -> 7, 6.999
|
||
|
829 [0.80957 , 0.81055 ) -> 7, 6.999
|
||
|
830 [0.81055 , 0.81152 ) -> 7, 6.999
|
||
|
831 [0.81152 , 0.8125 ) -> 7, 6.999
|
||
|
832 [0.8125 , 0.81348 ) -> 7, 6.999
|
||
|
833 [0.81348 , 0.81445 ) -> 7, 6.999
|
||
|
834 [0.81445 , 0.81543 ) -> 7, 6.999
|
||
|
835 [0.81543 , 0.81641 ) -> 7, 6.999
|
||
|
836 [0.81641 , 0.81738 ) -> 7, 6.999
|
||
|
837 [0.81738 , 0.81836 ) -> 7, 6.999
|
||
|
838 [0.81836 , 0.81934 ) -> 7, 6.999
|
||
|
839 [0.81934 , 0.82031 ) -> 7, 6.999
|
||
|
840 [0.82031 , 0.82129 ) -> 7, 6.999
|
||
|
841 [0.82129 , 0.82227 ) -> 7, 6.999
|
||
|
842 [0.82227 , 0.82324 ) -> 7, 6.999
|
||
|
843 [0.82324 , 0.82422 ) -> 7, 6.999
|
||
|
844 [0.82422 , 0.8252 ) -> 7, 6.999
|
||
|
845 [0.8252 , 0.82617 ) -> 7, 6.999
|
||
|
846 [0.82617 , 0.82715 ) -> 7, 6.999
|
||
|
847 [0.82715 , 0.82813 ) -> 7, 6.999
|
||
|
848 [0.82813 , 0.8291 ) -> 7, 6.999
|
||
|
849 [0.8291 , 0.83008 ) -> 7, 6.999
|
||
|
850 [0.83008 , 0.83105 ) -> 7, 6.999
|
||
|
851 [0.83105 , 0.83203 ) -> 7, 6.999
|
||
|
852 [0.83203 , 0.83301 ) -> 7, 6.999
|
||
|
853 [0.83301 , 0.83398 ) -> 7, 6.999
|
||
|
854 [0.83398 , 0.83496 ) -> 7, 6.999
|
||
|
855 [0.83496 , 0.83594 ) -> 7, 6.999
|
||
|
856 [0.83594 , 0.83691 ) -> 7, 6.999
|
||
|
857 [0.83691 , 0.83789 ) -> 7, 6.999
|
||
|
858 [0.83789 , 0.83887 ) -> 7, 6.999
|
||
|
859 [0.83887 , 0.83984 ) -> 7, 6.999
|
||
|
860 [0.83984 , 0.84082 ) -> 7, 6.999
|
||
|
861 [0.84082 , 0.8418 ) -> 7, 6.999
|
||
|
862 [0.8418 , 0.84277 ) -> 7, 6.999
|
||
|
863 [0.84277 , 0.84375 ) -> 7, 6.999
|
||
|
864 [0.84375 , 0.84473 ) -> 7, 6.999
|
||
|
865 [0.84473 , 0.8457 ) -> 7, 6.999
|
||
|
866 [0.8457 , 0.84668 ) -> 7, 6.999
|
||
|
867 [0.84668 , 0.84766 ) -> 7, 6.999
|
||
|
868 [0.84766 , 0.84863 ) -> 7, 6.999
|
||
|
869 [0.84863 , 0.84961 ) -> 7, 6.999
|
||
|
870 [0.84961 , 0.85059 ) -> 7, 6.999
|
||
|
871 [0.85059 , 0.85156 ) -> 7, 6.999
|
||
|
872 [0.85156 , 0.85254 ) -> 7, 6.999
|
||
|
873 [0.85254 , 0.85352 ) -> 7, 6.999
|
||
|
874 [0.85352 , 0.85449 ) -> 7, 6.999
|
||
|
875 [0.85449 , 0.85547 ) -> 7, 6.999
|
||
|
876 [0.85547 , 0.85645 ) -> 7, 6.999
|
||
|
877 [0.85645 , 0.85742 ) -> 7, 6.999
|
||
|
878 [0.85742 , 0.8584 ) -> 7, 6.999
|
||
|
879 [0.8584 , 0.85938 ) -> 7, 6.999
|
||
|
880 [0.85938 , 0.86035 ) -> 7, 6.999
|
||
|
881 [0.86035 , 0.86133 ) -> 7, 6.999
|
||
|
882 [0.86133 , 0.8623 ) -> 7, 6.999
|
||
|
883 [0.8623 , 0.86328 ) -> 7, 6.999
|
||
|
884 [0.86328 , 0.86426 ) -> 7, 6.999
|
||
|
885 [0.86426 , 0.86523 ) -> 7, 6.999
|
||
|
886 [0.86523 , 0.86621 ) -> 7, 6.999
|
||
|
887 [0.86621 , 0.86719 ) -> 7, 6.999
|
||
|
888 [0.86719 , 0.86816 ) -> 7, 6.999
|
||
|
889 [0.86816 , 0.86914 ) -> 7, 6.999
|
||
|
890 [0.86914 , 0.87012 ) -> 7, 6.999
|
||
|
891 [0.87012 , 0.87109 ) -> 7, 6.999
|
||
|
892 [0.87109 , 0.87207 ) -> 7, 6.999
|
||
|
893 [0.87207 , 0.87305 ) -> 7, 6.999
|
||
|
894 [0.87305 , 0.87402 ) -> 7, 6.999
|
||
|
895 [0.87402 , 0.875 ) -> 7, 6.999
|
||
|
896 [0.875 , 0.87598 ) -> 7, 6.999
|
||
|
897 [0.87598 , 0.87695 ) -> 7, 6.999
|
||
|
898 [0.87695 , 0.87793 ) -> 7, 6.999
|
||
|
899 [0.87793 , 0.87891 ) -> 7, 6.999
|
||
|
900 [0.87891 , 0.87988 ) -> 7, 6.999
|
||
|
901 [0.87988 , 0.88086 ) -> 7, 6.999
|
||
|
902 [0.88086 , 0.88184 ) -> 7, 6.999
|
||
|
903 [0.88184 , 0.88281 ) -> 7, 6.999
|
||
|
904 [0.88281 , 0.88379 ) -> 7, 6.999
|
||
|
905 [0.88379 , 0.88477 ) -> 7, 6.999
|
||
|
906 [0.88477 , 0.88574 ) -> 7, 6.999
|
||
|
907 [0.88574 , 0.88672 ) -> 7, 6.999
|
||
|
908 [0.88672 , 0.8877 ) -> 7, 6.999
|
||
|
909 [0.8877 , 0.88867 ) -> 7, 6.999
|
||
|
910 [0.88867 , 0.88965 ) -> 7, 6.999
|
||
|
911 [0.88965 , 0.89063 ) -> 7, 6.999
|
||
|
912 [0.89063 , 0.8916 ) -> 7, 6.999
|
||
|
913 [0.8916 , 0.89258 ) -> 7, 6.999
|
||
|
914 [0.89258 , 0.89355 ) -> 7, 6.999
|
||
|
915 [0.89355 , 0.89453 ) -> 7, 6.999
|
||
|
916 [0.89453 , 0.89551 ) -> 7, 6.999
|
||
|
917 [0.89551 , 0.89648 ) -> 7, 6.999
|
||
|
918 [0.89648 , 0.89746 ) -> 7, 6.999
|
||
|
919 [0.89746 , 0.89844 ) -> 7, 6.999
|
||
|
920 [0.89844 , 0.89941 ) -> 7, 6.999
|
||
|
921 [0.89941 , 0.90039 ) -> 7, 6.999
|
||
|
922 [0.90039 , 0.90137 ) -> 7, 6.999
|
||
|
923 [0.90137 , 0.90234 ) -> 7, 6.999
|
||
|
924 [0.90234 , 0.90332 ) -> 7, 6.999
|
||
|
925 [0.90332 , 0.9043 ) -> 7, 6.999
|
||
|
926 [0.9043 , 0.90527 ) -> 7, 6.999
|
||
|
927 [0.90527 , 0.90625 ) -> 7, 6.999
|
||
|
928 [0.90625 , 0.90723 ) -> 7, 6.999
|
||
|
929 [0.90723 , 0.9082 ) -> 7, 6.999
|
||
|
930 [0.9082 , 0.90918 ) -> 7, 6.999
|
||
|
931 [0.90918 , 0.91016 ) -> 7, 6.999
|
||
|
932 [0.91016 , 0.91113 ) -> 7, 6.999
|
||
|
933 [0.91113 , 0.91211 ) -> 7, 6.999
|
||
|
934 [0.91211 , 0.91309 ) -> 7, 6.999
|
||
|
935 [0.91309 , 0.91406 ) -> 7, 6.999
|
||
|
936 [0.91406 , 0.91504 ) -> 7, 6.999
|
||
|
937 [0.91504 , 0.91602 ) -> 7, 6.999
|
||
|
938 [0.91602 , 0.91699 ) -> 7, 6.999
|
||
|
939 [0.91699 , 0.91797 ) -> 7, 6.999
|
||
|
940 [0.91797 , 0.91895 ) -> 7, 6.999
|
||
|
941 [0.91895 , 0.91992 ) -> 7, 6.999
|
||
|
942 [0.91992 , 0.9209 ) -> 7, 6.999
|
||
|
943 [0.9209 , 0.92188 ) -> 7, 6.999
|
||
|
944 [0.92188 , 0.92285 ) -> 7, 6.999
|
||
|
945 [0.92285 , 0.92383 ) -> 7, 6.999
|
||
|
946 [0.92383 , 0.9248 ) -> 7, 6.999
|
||
|
947 [0.9248 , 0.92578 ) -> 7, 6.999
|
||
|
948 [0.92578 , 0.92676 ) -> 7, 6.999
|
||
|
949 [0.92676 , 0.92773 ) -> 7, 6.999
|
||
|
950 [0.92773 , 0.92871 ) -> 7, 6.999
|
||
|
951 [0.92871 , 0.92969 ) -> 7, 6.999
|
||
|
952 [0.92969 , 0.93066 ) -> 7, 6.999
|
||
|
953 [0.93066 , 0.93164 ) -> 7, 6.999
|
||
|
954 [0.93164 , 0.93262 ) -> 7, 6.999
|
||
|
955 [0.93262 , 0.93359 ) -> 7, 6.999
|
||
|
956 [0.93359 , 0.93457 ) -> 7, 6.999
|
||
|
957 [0.93457 , 0.93555 ) -> 7, 6.999
|
||
|
958 [0.93555 , 0.93652 ) -> 7, 6.999
|
||
|
959 [0.93652 , 0.9375 ) -> 7, 6.999
|
||
|
960 [0.9375 , 0.93848 ) -> 7, 6.999
|
||
|
961 [0.93848 , 0.93945 ) -> 7, 6.999
|
||
|
962 [0.93945 , 0.94043 ) -> 7, 6.999
|
||
|
963 [0.94043 , 0.94141 ) -> 7, 6.999
|
||
|
964 [0.94141 , 0.94238 ) -> 7, 6.999
|
||
|
965 [0.94238 , 0.94336 ) -> 7, 6.999
|
||
|
966 [0.94336 , 0.94434 ) -> 7, 6.999
|
||
|
967 [0.94434 , 0.94531 ) -> 7, 6.999
|
||
|
968 [0.94531 , 0.94629 ) -> 7, 6.999
|
||
|
969 [0.94629 , 0.94727 ) -> 7, 6.999
|
||
|
970 [0.94727 , 0.94824 ) -> 7, 6.999
|
||
|
971 [0.94824 , 0.94922 ) -> 7, 6.999
|
||
|
972 [0.94922 , 0.9502 ) -> 7, 6.999
|
||
|
973 [0.9502 , 0.95117 ) -> 7, 6.999
|
||
|
974 [0.95117 , 0.95215 ) -> 7, 6.999
|
||
|
975 [0.95215 , 0.95313 ) -> 7, 6.999
|
||
|
976 [0.95313 , 0.9541 ) -> 7, 6.999
|
||
|
977 [0.9541 , 0.95508 ) -> 7, 6.999
|
||
|
978 [0.95508 , 0.95605 ) -> 7, 6.999
|
||
|
979 [0.95605 , 0.95703 ) -> 7, 6.999
|
||
|
980 [0.95703 , 0.95801 ) -> 7, 6.999
|
||
|
981 [0.95801 , 0.95898 ) -> 7, 6.999
|
||
|
982 [0.95898 , 0.95996 ) -> 7, 6.999
|
||
|
983 [0.95996 , 0.96094 ) -> 7, 6.999
|
||
|
984 [0.96094 , 0.96191 ) -> 7, 6.999
|
||
|
985 [0.96191 , 0.96289 ) -> 7, 6.999
|
||
|
986 [0.96289 , 0.96387 ) -> 7, 6.999
|
||
|
987 [0.96387 , 0.96484 ) -> 7, 6.999
|
||
|
988 [0.96484 , 0.96582 ) -> 7, 6.999
|
||
|
989 [0.96582 , 0.9668 ) -> 7, 6.999
|
||
|
990 [0.9668 , 0.96777 ) -> 7, 6.999
|
||
|
991 [0.96777 , 0.96875 ) -> 7, 6.999
|
||
|
992 [0.96875 , 0.96973 ) -> 7, 6.999
|
||
|
993 [0.96973 , 0.9707 ) -> 7, 6.999
|
||
|
994 [0.9707 , 0.97168 ) -> 7, 6.999
|
||
|
995 [0.97168 , 0.97266 ) -> 7, 6.999
|
||
|
996 [0.97266 , 0.97363 ) -> 7, 6.999
|
||
|
997 [0.97363 , 0.97461 ) -> 7, 6.999
|
||
|
998 [0.97461 , 0.97559 ) -> 7, 6.999
|
||
|
999 [0.97559 , 0.97656 ) -> 7, 6.999
|
||
|
1000 [0.97656 , 0.97754 ) -> 7, 6.999
|
||
|
1001 [0.97754 , 0.97852 ) -> 7, 6.999
|
||
|
1002 [0.97852 , 0.97949 ) -> 7, 6.999
|
||
|
1003 [0.97949 , 0.98047 ) -> 7, 6.999
|
||
|
1004 [0.98047 , 0.98145 ) -> 7, 6.999
|
||
|
1005 [0.98145 , 0.98242 ) -> 7, 6.999
|
||
|
1006 [0.98242 , 0.9834 ) -> 7, 6.999
|
||
|
1007 [0.9834 , 0.98438 ) -> 7, 6.999
|
||
|
1008 [0.98438 , 0.98535 ) -> 7, 6.999
|
||
|
1009 [0.98535 , 0.98633 ) -> 7, 6.999
|
||
|
1010 [0.98633 , 0.9873 ) -> 7, 6.999
|
||
|
1011 [0.9873 , 0.98828 ) -> 7, 6.999
|
||
|
1012 [0.98828 , 0.98926 ) -> 7, 6.999
|
||
|
1013 [0.98926 , 0.99023 ) -> 7, 6.999
|
||
|
1014 [0.99023 , 0.99121 ) -> 7, 6.999
|
||
|
1015 [0.99121 , 0.99219 ) -> 7, 6.999
|
||
|
1016 [0.99219 , 0.99316 ) -> 7, 6.999
|
||
|
1017 [0.99316 , 0.99414 ) -> 7, 6.999
|
||
|
1018 [0.99414 , 0.99512 ) -> 7, 6.999
|
||
|
1019 [0.99512 , 0.99609 ) -> 7, 6.999
|
||
|
1020 [0.99609 , 0.99707 ) -> 7, 6.999
|
||
|
1021 [0.99707 , 0.99805 ) -> 7, 6.999
|
||
|
1022 [0.99805 , 0.99902 ) -> 7, 6.999
|
||
|
1023 [0.99902 , 1 ) -> 7, 6.999
|