/* NeuQuant Neural-Net Quantization Algorithm Interface * ---------------------------------------------------- * * Copyright (c) 1994 Anthony Dekker * * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. * See "Kohonen neural networks for optimal colour quantization" * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. * for a discussion of the algorithm. * See also http://www.acm.org/~dekker/NEUQUANT.HTML * * Any party obtaining a copy of these files from the author, directly or * indirectly, is granted, free of charge, a full and unrestricted irrevocable, * world-wide, paid up, royalty-free, nonexclusive right and license to deal * in this software and documentation files (the "Software"), including without * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons who receive * copies from any such party to do so, with the only requirement being * that this copyright notice remain intact. */ #include #define netsize 256 /* number of colours used */ /* For 256 colours, fixed arrays need 8kb, plus space for the image ---------------------------------------------------------------- */ /* four primes near 500 - assume no image has a length so large */ /* that it is divisible by all four primes */ #define prime1 499 #define prime2 491 #define prime3 487 #define prime4 503 #define minpicturebytes (3*prime4) /* minimum size for input image */ /* Initialise network in range (0,0,0) to (255,255,255) and set parameters ----------------------------------------------------------------------- */ void initnet(unsigned char *thepic, int len, int sample); /* Unbias network to give byte values 0..255 and record position i to prepare for sort ----------------------------------------------------------------------------------- */ void unbiasnet(); /* can edit this function to do output of colour map */ /* Output colour map ----------------- */ void writecolourmap(FILE *f); /* Insertion sort of network and building of netindex[0..255] (to do after unbias) ------------------------------------------------------------------------------- */ void inxbuild(); /* Search for BGR values 0..255 (after net is unbiased) and return colour index ---------------------------------------------------------------------------- */ char inxsearch(register int b, register int g, register int r); /* Main Learning Loop ------------------ */ void learn(); /* Program Skeleton ---------------- [select samplefac in range 1..30] pic = (unsigned char*) malloc(3*width*height); [read image from input file into pic] initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output image header, using writecolourmap(f), possibly editing the loops in that function] inxbuild(); [write output image using inxsearch(b,g,r)] */