/** ****************************************************************************** * @file stm32f3xx_hal_uart.c * @author MCD Application Team * @version V1.3.0 * @date 01-July-2016 * @brief UART HAL module driver. * This file provides firmware functions to manage the following * functionalities of the Universal Asynchronous Receiver Transmitter (UART) peripheral: * + Initialization and de-initialization functions * + IO operation functions * + Peripheral Control functions * + Peripheral State and Errors functions * @verbatim =============================================================================== ##### How to use this driver ##### =============================================================================== [..] The UART HAL driver can be used as follows: (#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart). (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API: (++) Enable the USARTx interface clock. (++) UART pins configuration: (+++) Enable the clock for the UART GPIOs. (+++) Configure these UART pins as alternate function pull-up. (++) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT() and HAL_UART_Receive_IT() APIs): (+++) Configure the USARTx interrupt priority. (+++) Enable the NVIC USART IRQ handle. (++) UART interrupts handling: -@@- The specific UART interrupts (Transmission complete interrupt, RXNE interrupt and Error Interrupts) are managed using the macros __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit and receive processes. (++) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA() and HAL_UART_Receive_DMA() APIs): (+++) Declare a DMA handle structure for the Tx/Rx channel. (+++) Enable the DMAx interface clock. (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. (+++) Configure the DMA Tx/Rx channel. (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle. (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel. (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware flow control and Mode (Receiver/Transmitter) in the huart handle Init structure. (#) If required, program UART advanced features (TX/RX pins swap, auto Baud rate detection,...) in the huart handle AdvancedInit structure. (#) For the UART asynchronous mode, initialize the UART registers by calling the HAL_UART_Init() API. (#) For the UART Half duplex mode, initialize the UART registers by calling the HAL_HalfDuplex_Init() API. (#) For the UART LIN (Local Interconnection Network) mode, initialize the UART registers by calling the HAL_LIN_Init() API. (#) For the UART Multiprocessor mode, initialize the UART registers by calling the HAL_MultiProcessor_Init() API. (#) For the UART RS485 Driver Enabled mode, initialize the UART registers by calling the HAL_RS485Ex_Init() API. [..] (@) These APIs(HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_MultiProcessor_Init(), also configure the low level Hardware GPIO, CLOCK, CORTEX...etc) by calling the customized HAL_UART_MspInit() API. Three operation modes are available within this driver : *** Polling mode IO operation *** ================================= [..] (+) Send an amount of data in blocking mode using HAL_UART_Transmit() (+) Receive an amount of data in blocking mode using HAL_UART_Receive() *** Interrupt mode IO operation *** =================================== [..] (+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT() (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can add his own code by customization of function pointer HAL_UART_TxCpltCallback (+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT() (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can add his own code by customization of function pointer HAL_UART_RxCpltCallback (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can add his own code by customization of function pointer HAL_UART_ErrorCallback *** DMA mode IO operation *** ============================== [..] (+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA() (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can add his own code by customization of function pointer HAL_UART_TxCpltCallback (+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA() (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can add his own code by customization of function pointer HAL_UART_RxCpltCallback (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can add his own code by customization of function pointer HAL_UART_ErrorCallback (+) Pause the DMA Transfer using HAL_UART_DMAPause() (+) Resume the DMA Transfer using HAL_UART_DMAResume() (+) Stop the DMA Transfer using HAL_UART_DMAStop() *** UART HAL driver macros list *** ============================================= [..] Below the list of most used macros in UART HAL driver. (+) __HAL_UART_ENABLE: Enable the UART peripheral (+) __HAL_UART_DISABLE: Disable the UART peripheral (+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not (+) __HAL_UART_CLEAR_FLAG : Clear the specified UART pending flag (+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt (+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt [..] (@) You can refer to the UART HAL driver header file for more useful macros @endverbatim ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2016 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f3xx_hal.h" /** @addtogroup STM32F3xx_HAL_Driver * @{ */ /** @defgroup UART UART * @brief UART HAL module driver * @{ */ #ifdef HAL_UART_MODULE_ENABLED /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @defgroup UART_Private_Constants UART Private Constants * @{ */ #define UART_TEACK_REACK_TIMEOUT ((uint32_t) 1000) /*!< UART TX or RX enable acknowledge time-out value */ #define UART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | \ USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8)) /*!< UART or USART CR1 fields of parameters set by UART_SetConfig API */ /** * @} */ /* Private macros ------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /** @addtogroup UART_Private_Functions UART Private Functions * @{ */ static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma); static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma); static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma); static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma); static void UART_DMAError(DMA_HandleTypeDef *hdma); /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup UART_Exported_Functions UART Exported Functions * @{ */ /** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions * @brief Initialization and Configuration functions * @verbatim =============================================================================== ##### Initialization and Configuration functions ##### =============================================================================== [..] This subsection provides a set of functions allowing to initialize the USARTx or the UARTy in asynchronous mode. (+) For the asynchronous mode the parameters below can be configured: (++) Baud Rate (++) Word Length (++) Stop Bit (++) Parity (++) Hardware flow control (++) Receiver/transmitter modes (++) Over Sampling Method (++) One-Bit Sampling Method (+) For the asynchronous mode, the following advanced features can be configured as well: (++) TX and/or RX pin level inversion (++) data logical level inversion (++) RX and TX pins swap (++) RX overrun detection disabling (++) DMA disabling on RX error (++) MSB first on communication line (++) auto Baud rate detection [..] The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init() and HAL_MultiProcessor_Init() API follow respectively the UART asynchronous, UART Half duplex, UART LIN mode and multiprocessor configuration procedures (details for the procedures are available in reference manual). @endverbatim * @{ */ /* Additional Table: If the parity is enabled, then the MSB bit of the data written in the data register is transmitted but is changed by the parity bit. According to device capability (support or not of 7-bit word length), frame length is either defined by the M bit (8-bits or 9-bits) or by the M1 and M0 bits (7-bit, 8-bit or 9-bit). Possible UART frame formats are as listed in the following table: Table 1. UART frame format. +-----------------------------------------------------------------------+ | M bit | PCE bit | UART frame | |-------------------|-----------|---------------------------------------| | 0 | 0 | | SB | 8-bit data | STB | | |-------------------|-----------|---------------------------------------| | 0 | 1 | | SB | 7-bit data | PB | STB | | |-------------------|-----------|---------------------------------------| | 1 | 0 | | SB | 9-bit data | STB | | |-------------------|-----------|---------------------------------------| | 1 | 1 | | SB | 8-bit data | PB | STB | | +-----------------------------------------------------------------------+ | M1 bit | M0 bit | PCE bit | UART frame | |---------|---------|-----------|---------------------------------------| | 0 | 0 | 0 | | SB | 8 bit data | STB | | |---------|---------|-----------|---------------------------------------| | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | | |---------|---------|-----------|---------------------------------------| | 0 | 1 | 0 | | SB | 9 bit data | STB | | |---------|---------|-----------|---------------------------------------| | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | | |---------|---------|-----------|---------------------------------------| | 1 | 0 | 0 | | SB | 7 bit data | STB | | |---------|---------|-----------|---------------------------------------| | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | | +-----------------------------------------------------------------------+ */ /** * @brief Initialize the UART mode according to the specified * parameters in the UART_InitTypeDef and initialize the associated handle. * @param huart: UART handle. * @retval HAL status */ HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart) { /* Check the UART handle allocation */ if(huart == NULL) { return HAL_ERROR; } if(huart->Init.HwFlowCtl != UART_HWCONTROL_NONE) { /* Check the parameters */ assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance)); } else { /* Check the parameters */ assert_param(IS_UART_INSTANCE(huart->Instance)); } if(huart->gState == HAL_UART_STATE_RESET) { /* Allocate lock resource and initialize it */ huart->Lock = HAL_UNLOCKED; /* Init the low level hardware : GPIO, CLOCK */ HAL_UART_MspInit(huart); } huart->gState = HAL_UART_STATE_BUSY; /* Disable the Peripheral */ __HAL_UART_DISABLE(huart); /* Set the UART Communication parameters */ if (UART_SetConfig(huart) == HAL_ERROR) { return HAL_ERROR; } if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) { UART_AdvFeatureConfig(huart); } /* In asynchronous mode, the following bits must be kept cleared: - LINEN and CLKEN bits in the USART_CR2 register, - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/ huart->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_CLKEN); huart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN); /* Enable the Peripheral */ __HAL_UART_ENABLE(huart); /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ return (UART_CheckIdleState(huart)); } /** * @brief Initialize the half-duplex mode according to the specified * parameters in the UART_InitTypeDef and creates the associated handle. * @param huart: UART handle. * @retval HAL status */ HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart) { /* Check the UART handle allocation */ if(huart == NULL) { return HAL_ERROR; } /* Check UART instance */ assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance)); if(huart->gState == HAL_UART_STATE_RESET) { /* Allocate lock resource and initialize it */ huart->Lock = HAL_UNLOCKED; /* Init the low level hardware : GPIO, CLOCK */ HAL_UART_MspInit(huart); } huart->gState = HAL_UART_STATE_BUSY; /* Disable the Peripheral */ __HAL_UART_DISABLE(huart); /* Set the UART Communication parameters */ if (UART_SetConfig(huart) == HAL_ERROR) { return HAL_ERROR; } if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) { UART_AdvFeatureConfig(huart); } /* In half-duplex mode, the following bits must be kept cleared: - LINEN and CLKEN bits in the USART_CR2 register, - SCEN and IREN bits in the USART_CR3 register.*/ huart->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_CLKEN); huart->Instance->CR3 &= ~(USART_CR3_IREN | USART_CR3_SCEN); /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */ huart->Instance->CR3 |= USART_CR3_HDSEL; /* Enable the Peripheral */ __HAL_UART_ENABLE(huart); /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ return (UART_CheckIdleState(huart)); } /** * @brief Initialize the LIN mode according to the specified * parameters in the UART_InitTypeDef and creates the associated handle . * @param huart: UART handle. * @param BreakDetectLength: specifies the LIN break detection length. * This parameter can be one of the following values: * @arg UART_LINBREAKDETECTLENGTH_10B: 10-bit break detection * @arg UART_LINBREAKDETECTLENGTH_11B: 11-bit break detection * @retval HAL status */ HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength) { /* Check the UART handle allocation */ if(huart == NULL) { return HAL_ERROR; } /* Check the LIN UART instance */ assert_param(IS_UART_LIN_INSTANCE(huart->Instance)); /* Check the Break detection length parameter */ assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength)); /* LIN mode limited to 16-bit oversampling only */ if(huart->Init.OverSampling == UART_OVERSAMPLING_8) { return HAL_ERROR; } /* LIN mode limited to 8-bit data length */ if(huart->Init.WordLength != UART_WORDLENGTH_8B) { return HAL_ERROR; } if(huart->gState == HAL_UART_STATE_RESET) { /* Allocate lock resource and initialize it */ huart->Lock = HAL_UNLOCKED; /* Init the low level hardware : GPIO, CLOCK */ HAL_UART_MspInit(huart); } huart->gState = HAL_UART_STATE_BUSY; /* Disable the Peripheral */ __HAL_UART_DISABLE(huart); /* Set the UART Communication parameters */ if (UART_SetConfig(huart) == HAL_ERROR) { return HAL_ERROR; } if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) { UART_AdvFeatureConfig(huart); } /* In LIN mode, the following bits must be kept cleared: - LINEN and CLKEN bits in the USART_CR2 register, - SCEN and IREN bits in the USART_CR3 register.*/ huart->Instance->CR2 &= ~(USART_CR2_CLKEN); huart->Instance->CR3 &= ~(USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN); /* Enable the LIN mode by setting the LINEN bit in the CR2 register */ huart->Instance->CR2 |= USART_CR2_LINEN; /* Set the USART LIN Break detection length. */ MODIFY_REG(huart->Instance->CR2, USART_CR2_LBDL, BreakDetectLength); /* Enable the Peripheral */ __HAL_UART_ENABLE(huart); /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ return (UART_CheckIdleState(huart)); } /** * @brief Initialize the multiprocessor mode according to the specified * parameters in the UART_InitTypeDef and initialize the associated handle. * @param huart: UART handle. * @param Address: UART node address (4-, 6-, 7- or 8-bit long). * @param WakeUpMethod: specifies the UART wakeup method. * This parameter can be one of the following values: * @arg UART_WAKEUPMETHOD_IDLELINE: WakeUp by an idle line detection * @arg UART_WAKEUPMETHOD_ADDRESSMARK: WakeUp by an address mark * @note If the user resorts to idle line detection wake up, the Address parameter * is useless and ignored by the initialization function. * @note If the user resorts to address mark wake up, the address length detection * is configured by default to 4 bits only. For the UART to be able to * manage 6-, 7- or 8-bit long addresses detection, the API * HAL_MultiProcessorEx_AddressLength_Set() must be called after * HAL_MultiProcessor_Init(). * @retval HAL status */ HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod) { /* Check the UART handle allocation */ if(huart == NULL) { return HAL_ERROR; } /* Check the wake up method parameter */ assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod)); if(huart->gState == HAL_UART_STATE_RESET) { /* Allocate lock resource and initialize it */ huart->Lock = HAL_UNLOCKED; /* Init the low level hardware : GPIO, CLOCK */ HAL_UART_MspInit(huart); } huart->gState = HAL_UART_STATE_BUSY; /* Disable the Peripheral */ __HAL_UART_DISABLE(huart); /* Set the UART Communication parameters */ if (UART_SetConfig(huart) == HAL_ERROR) { return HAL_ERROR; } if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) { UART_AdvFeatureConfig(huart); } /* In multiprocessor mode, the following bits must be kept cleared: - LINEN and CLKEN bits in the USART_CR2 register, - SCEN, HDSEL and IREN bits in the USART_CR3 register. */ huart->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_CLKEN); huart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN); if (WakeUpMethod == UART_WAKEUPMETHOD_ADDRESSMARK) { /* If address mark wake up method is chosen, set the USART address node */ MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)Address << UART_CR2_ADDRESS_LSB_POS)); } /* Set the wake up method by setting the WAKE bit in the CR1 register */ MODIFY_REG(huart->Instance->CR1, USART_CR1_WAKE, WakeUpMethod); /* Enable the Peripheral */ __HAL_UART_ENABLE(huart); /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ return (UART_CheckIdleState(huart)); } /** * @brief DeInitialize the UART peripheral. * @param huart: UART handle. * @retval HAL status */ HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart) { /* Check the UART handle allocation */ if(huart == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_UART_INSTANCE(huart->Instance)); huart->gState = HAL_UART_STATE_BUSY; /* Disable the Peripheral */ __HAL_UART_DISABLE(huart); huart->Instance->CR1 = 0x0; huart->Instance->CR2 = 0x0; huart->Instance->CR3 = 0x0; /* DeInit the low level hardware */ HAL_UART_MspDeInit(huart); huart->ErrorCode = HAL_UART_ERROR_NONE; huart->gState = HAL_UART_STATE_RESET; huart->RxState = HAL_UART_STATE_RESET; /* Process Unlock */ __HAL_UNLOCK(huart); return HAL_OK; } /** * @brief Initialize the UART MSP. * @param huart: UART handle. * @retval None */ __weak void HAL_UART_MspInit(UART_HandleTypeDef *huart) { /* Prevent unused argument(s) compilation warning */ UNUSED(huart); /* NOTE : This function should not be modified, when the callback is needed, the HAL_UART_MspInit can be implemented in the user file */ } /** * @brief DeInitialize the UART MSP. * @param huart: UART handle. * @retval None */ __weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart) { /* Prevent unused argument(s) compilation warning */ UNUSED(huart); /* NOTE : This function should not be modified, when the callback is needed, the HAL_UART_MspDeInit can be implemented in the user file */ } /** * @} */ /** @defgroup UART_Exported_Functions_Group2 IO operation functions * @brief UART Transmit/Receive functions * @verbatim =============================================================================== ##### IO operation functions ##### =============================================================================== This subsection provides a set of functions allowing to manage the UART asynchronous and Half duplex data transfers. (#) There are two mode of transfer: (+) Blocking mode: The communication is performed in polling mode. The HAL status of all data processing is returned by the same function after finishing transfer. (+) No-Blocking mode: The communication is performed using Interrupts or DMA, These API's return the HAL status. The end of the data processing will be indicated through the dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode. The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks will be executed respectively at the end of the transmit or Receive process The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected (#) Blocking mode API's are : (+) HAL_UART_Transmit() (+) HAL_UART_Receive() (#) No-Blocking mode API's with Interrupt are : (+) HAL_UART_Transmit_IT() (+) HAL_UART_Receive_IT() (+) HAL_UART_IRQHandler() (#) No-Blocking mode API's with DMA are : (+) HAL_UART_Transmit_DMA() (+) HAL_UART_Receive_DMA() (+) HAL_UART_DMAPause() (+) HAL_UART_DMAResume() (+) HAL_UART_DMAStop() (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode: (+) HAL_UART_TxHalfCpltCallback() (+) HAL_UART_TxCpltCallback() (+) HAL_UART_RxHalfCpltCallback() (+) HAL_UART_RxCpltCallback() (+) HAL_UART_ErrorCallback() -@- In the Half duplex communication, it is forbidden to run the transmit and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful. @endverbatim * @{ */ /** * @brief Send an amount of data in blocking mode. * @param huart: UART handle. * @param pData: Pointer to data buffer. * @param Size: Amount of data to be sent. * @param Timeout: Timeout duration. * @retval HAL status */ HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout) { uint16_t* tmp; /* Check that a Tx process is not already ongoing */ if(huart->gState == HAL_UART_STATE_READY) { if((pData == NULL ) || (Size == 0)) { return HAL_ERROR; } /* Process Locked */ __HAL_LOCK(huart); huart->ErrorCode = HAL_UART_ERROR_NONE; huart->gState = HAL_UART_STATE_BUSY_TX; huart->TxXferSize = Size; huart->TxXferCount = Size; while(huart->TxXferCount > 0) { huart->TxXferCount--; if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, Timeout) != HAL_OK) { return HAL_TIMEOUT; } if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) { tmp = (uint16_t*) pData; huart->Instance->TDR = (*tmp & (uint16_t)0x01FF); pData += 2; } else { huart->Instance->TDR = (*pData++ & (uint8_t)0xFF); } } if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, Timeout) != HAL_OK) { return HAL_TIMEOUT; } /* At end of Tx process, restore huart->gState to Ready */ huart->gState = HAL_UART_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(huart); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Receive an amount of data in blocking mode. * @param huart: UART handle. * @param pData: pointer to data buffer. * @param Size: amount of data to be received. * @param Timeout: Timeout duration. * @retval HAL status */ HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout) { uint16_t* tmp; uint16_t uhMask; /* Check that a Rx process is not already ongoing */ if(huart->RxState == HAL_UART_STATE_READY) { if((pData == NULL ) || (Size == 0)) { return HAL_ERROR; } /* Process Locked */ __HAL_LOCK(huart); huart->ErrorCode = HAL_UART_ERROR_NONE; huart->RxState = HAL_UART_STATE_BUSY_RX; huart->RxXferSize = Size; huart->RxXferCount = Size; /* Computation of UART mask to apply to RDR register */ UART_MASK_COMPUTATION(huart); uhMask = huart->Mask; /* as long as data have to be received */ while(huart->RxXferCount > 0) { huart->RxXferCount--; if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, Timeout) != HAL_OK) { return HAL_TIMEOUT; } if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) { tmp = (uint16_t*) pData ; *tmp = (uint16_t)(huart->Instance->RDR & uhMask); pData +=2; } else { *pData++ = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask); } } /* At end of Rx process, restore huart->RxState to Ready */ huart->RxState = HAL_UART_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(huart); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Send an amount of data in interrupt mode. * @param huart: UART handle. * @param pData: pointer to data buffer. * @param Size: amount of data to be sent. * @retval HAL status */ HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) { /* Check that a Tx process is not already ongoing */ if(huart->gState == HAL_UART_STATE_READY) { if((pData == NULL ) || (Size == 0)) { return HAL_ERROR; } /* Process Locked */ __HAL_LOCK(huart); huart->pTxBuffPtr = pData; huart->TxXferSize = Size; huart->TxXferCount = Size; huart->ErrorCode = HAL_UART_ERROR_NONE; huart->gState = HAL_UART_STATE_BUSY_TX; /* Process Unlocked */ __HAL_UNLOCK(huart); /* Enable the UART Transmit Data Register Empty Interrupt */ __HAL_UART_ENABLE_IT(huart, UART_IT_TXE); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Receive an amount of data in interrupt mode. * @param huart: UART handle. * @param pData: pointer to data buffer. * @param Size: amount of data to be received. * @retval HAL status */ HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) { /* Check that a Rx process is not already ongoing */ if(huart->RxState == HAL_UART_STATE_READY) { if((pData == NULL ) || (Size == 0)) { return HAL_ERROR; } /* Process Locked */ __HAL_LOCK(huart); huart->pRxBuffPtr = pData; huart->RxXferSize = Size; huart->RxXferCount = Size; /* Computation of UART mask to apply to RDR register */ UART_MASK_COMPUTATION(huart); huart->ErrorCode = HAL_UART_ERROR_NONE; huart->RxState = HAL_UART_STATE_BUSY_RX; /* Enable the UART Parity Error Interrupt */ __HAL_UART_ENABLE_IT(huart, UART_IT_PE); /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ __HAL_UART_ENABLE_IT(huart, UART_IT_ERR); /* Process Unlocked */ __HAL_UNLOCK(huart); /* Enable the UART Data Register not empty Interrupt */ __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Send an amount of data in DMA mode. * @param huart: UART handle. * @param pData: pointer to data buffer. * @param Size: amount of data to be sent. * @note This function starts a DMA transfer in interrupt mode meaning that * DMA half transfer complete, DMA transfer complete and DMA transfer * error interrupts are enabled * @retval HAL status */ HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) { uint32_t *tmp; /* Check if UART instance supports continuous communication using DMA */ assert_param(IS_UART_DMA_INSTANCE(huart->Instance)); /* Check that a Tx process is not already ongoing */ if(huart->gState == HAL_UART_STATE_READY) { if((pData == NULL ) || (Size == 0)) { return HAL_ERROR; } /* Process Locked */ __HAL_LOCK(huart); huart->pTxBuffPtr = pData; huart->TxXferSize = Size; huart->TxXferCount = Size; huart->ErrorCode = HAL_UART_ERROR_NONE; huart->gState = HAL_UART_STATE_BUSY_TX; /* Set the UART DMA transfer complete callback */ huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt; /* Set the UART DMA Half transfer complete callback */ huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt; /* Set the DMA error callback */ huart->hdmatx->XferErrorCallback = UART_DMAError; /* Enable the UART transmit DMA channel */ tmp = (uint32_t*)&pData; HAL_DMA_Start_IT(huart->hdmatx, *(uint32_t*)tmp, (uint32_t)&huart->Instance->TDR, Size); /* Clear the TC flag in the ICR register */ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_TCF); /* Enable the DMA transfer for transmit request by setting the DMAT bit in the UART CR3 register */ huart->Instance->CR3 |= USART_CR3_DMAT; /* Process Unlocked */ __HAL_UNLOCK(huart); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Receive an amount of data in DMA mode. * @param huart: UART handle. * @param pData: pointer to data buffer. * @param Size: amount of data to be received. * @note When the UART parity is enabled (PCE = 1), the received data contain * the parity bit (MSB position). * @note This function starts a DMA transfer in interrupt mode meaning that * DMA half transfer complete, DMA transfer complete and DMA transfer * error interrupts are enabled * @retval HAL status */ HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) { uint32_t *tmp; /* Check if UART instance supports continuous communication using DMA */ assert_param(IS_UART_DMA_INSTANCE(huart->Instance)); /* Check that a Rx process is not already ongoing */ if(huart->RxState == HAL_UART_STATE_READY) { if((pData == NULL ) || (Size == 0)) { return HAL_ERROR; } /* Process Locked */ __HAL_LOCK(huart); huart->pRxBuffPtr = pData; huart->RxXferSize = Size; huart->ErrorCode = HAL_UART_ERROR_NONE; huart->RxState = HAL_UART_STATE_BUSY_RX; /* Set the UART DMA transfer complete callback */ huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt; /* Set the UART DMA Half transfer complete callback */ huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt; /* Set the DMA error callback */ huart->hdmarx->XferErrorCallback = UART_DMAError; /* Enable the DMA channel */ tmp = (uint32_t*)&pData; HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->RDR, *(uint32_t*)tmp, Size); /* Enable the DMA transfer for the receiver request by setting the DMAR bit in the UART CR3 register */ huart->Instance->CR3 |= USART_CR3_DMAR; /* Process Unlocked */ __HAL_UNLOCK(huart); return HAL_OK; } else { return HAL_BUSY; } } /** * @brief Pause the DMA Transfer. * @param huart: UART handle. * @retval HAL status */ HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart) { /* Process Locked */ __HAL_LOCK(huart); if(huart->gState == HAL_UART_STATE_BUSY_TX) { /* Disable the UART DMA Tx request */ huart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAT); } if(huart->RxState == HAL_UART_STATE_BUSY_RX) { /* Disable the UART DMA Rx request */ huart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAR); } /* Process Unlocked */ __HAL_UNLOCK(huart); return HAL_OK; } /** * @brief Resume the DMA Transfer. * @param huart: UART handle. * @retval HAL status */ HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart) { /* Process Locked */ __HAL_LOCK(huart); if(huart->gState == HAL_UART_STATE_BUSY_TX) { /* Enable the UART DMA Tx request */ huart->Instance->CR3 |= USART_CR3_DMAT; } if(huart->RxState == HAL_UART_STATE_BUSY_RX) { /* Clear the Overrun flag before resumming the Rx transfer*/ __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF); /* Enable the UART DMA Rx request */ huart->Instance->CR3 |= USART_CR3_DMAR; } /* Process Unlocked */ __HAL_UNLOCK(huart); return HAL_OK; } /** * @brief Stop the DMA Transfer. * @param huart: UART handle. * @retval HAL status */ HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart) { /* The Lock is not implemented on this API to allow the user application to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() / HAL_UART_TxHalfCpltCallback() / HAL_UART_RxHalfCpltCallback (): indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of the stream and the corresponding call back is executed. */ /* Disable the UART Tx/Rx DMA requests */ huart->Instance->CR3 &= ~USART_CR3_DMAT; huart->Instance->CR3 &= ~USART_CR3_DMAR; /* Abort the UART DMA tx channel */ if(huart->hdmatx != NULL) { HAL_DMA_Abort(huart->hdmatx); } /* Abort the UART DMA rx channel */ if(huart->hdmarx != NULL) { HAL_DMA_Abort(huart->hdmarx); } huart->gState = HAL_UART_STATE_READY; huart->RxState = HAL_UART_STATE_READY; return HAL_OK; } /** * @brief Handle UART interrupt request. * @param huart: UART handle. * @retval None */ void HAL_UART_IRQHandler(UART_HandleTypeDef *huart) { /* UART parity error interrupt occurred -------------------------------------*/ if((__HAL_UART_GET_IT(huart, UART_IT_PE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_PE) != RESET)) { __HAL_UART_CLEAR_IT(huart, UART_CLEAR_PEF); huart->ErrorCode |= HAL_UART_ERROR_PE; } /* UART frame error interrupt occurred --------------------------------------*/ if((__HAL_UART_GET_IT(huart, UART_IT_FE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR) != RESET)) { __HAL_UART_CLEAR_IT(huart, UART_CLEAR_FEF); huart->ErrorCode |= HAL_UART_ERROR_FE; } /* UART noise error interrupt occurred --------------------------------------*/ if((__HAL_UART_GET_IT(huart, UART_IT_NE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR) != RESET)) { __HAL_UART_CLEAR_IT(huart, UART_CLEAR_NEF); huart->ErrorCode |= HAL_UART_ERROR_NE; } /* UART Over-Run interrupt occurred -----------------------------------------*/ if((__HAL_UART_GET_IT(huart, UART_IT_ORE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR) != RESET)) { __HAL_UART_CLEAR_IT(huart, UART_CLEAR_OREF); huart->ErrorCode |= HAL_UART_ERROR_ORE; } /* UART wakeup from Stop mode interrupt occurred -------------------------------------*/ if((__HAL_UART_GET_IT(huart, UART_IT_WUF) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_WUF) != RESET)) { __HAL_UART_CLEAR_IT(huart, UART_CLEAR_WUF); /* Set the UART state ready to be able to start again the process */ huart->gState = HAL_UART_STATE_READY; huart->RxState = HAL_UART_STATE_READY; HAL_UARTEx_WakeupCallback(huart); } /* UART in mode Receiver ---------------------------------------------------*/ if((__HAL_UART_GET_IT(huart, UART_IT_RXNE) != RESET) && (__HAL_UART_GET_IT_SOURCE(huart, UART_IT_RXNE) != RESET)) { UART_Receive_IT(huart); } /* UART in mode Transmitter ------------------------------------------------*/ if((__HAL_UART_GET_IT(huart, UART_IT_TXE) != RESET) &&(__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TXE) != RESET)) { UART_Transmit_IT(huart); } /* UART in mode Transmitter (transmission end) -----------------------------*/ if((__HAL_UART_GET_IT(huart, UART_IT_TC) != RESET) &&(__HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC) != RESET)) { UART_EndTransmit_IT(huart); } if(huart->ErrorCode != HAL_UART_ERROR_NONE) { /* Set the UART state ready to be able to start again the Tx/Rx process */ huart->gState = HAL_UART_STATE_READY; huart->RxState = HAL_UART_STATE_READY; HAL_UART_ErrorCallback(huart); } } /** * @brief Tx Transfer completed callback. * @param huart: UART handle. * @retval None */ __weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) { /* Prevent unused argument(s) compilation warning */ UNUSED(huart); /* NOTE : This function should not be modified, when the callback is needed, the HAL_UART_TxCpltCallback can be implemented in the user file. */ } /** * @brief Tx Half Transfer completed callback. * @param huart: UART handle. * @retval None */ __weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart) { /* Prevent unused argument(s) compilation warning */ UNUSED(huart); /* NOTE: This function should not be modified, when the callback is needed, the HAL_UART_TxHalfCpltCallback can be implemented in the user file. */ } /** * @brief Rx Transfer completed callback. * @param huart: UART handle. * @retval None */ __weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { /* Prevent unused argument(s) compilation warning */ UNUSED(huart); /* NOTE : This function should not be modified, when the callback is needed, the HAL_UART_RxCpltCallback can be implemented in the user file. */ } /** * @brief Rx Half Transfer completed callback. * @param huart: UART handle. * @retval None */ __weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart) { /* Prevent unused argument(s) compilation warning */ UNUSED(huart); /* NOTE: This function should not be modified, when the callback is needed, the HAL_UART_RxHalfCpltCallback can be implemented in the user file. */ } /** * @brief UART error callback. * @param huart: UART handle. * @retval None */ __weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) { /* Prevent unused argument(s) compilation warning */ UNUSED(huart); /* NOTE : This function should not be modified, when the callback is needed, the HAL_UART_ErrorCallback can be implemented in the user file. */ } /** * @} */ /** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions * @brief UART control functions * @verbatim =============================================================================== ##### Peripheral Control functions ##### =============================================================================== [..] This subsection provides a set of functions allowing to control the UART. (+) HAL_MultiProcessor_EnableMuteMode() API enables mute mode (+) HAL_MultiProcessor_DisableMuteMode() API disables mute mode (+) HAL_MultiProcessor_EnterMuteMode() API enters mute mode (+) HAL_HalfDuplex_EnableTransmitter() API disables receiver and enables transmitter (+) HAL_HalfDuplex_EnableReceiver() API disables transmitter and enables receiver (+) HAL_LIN_SendBreak() API transmits the break characters @endverbatim * @{ */ /** * @brief Enable UART in mute mode (does not mean UART enters mute mode; * to enter mute mode, HAL_MultiProcessor_EnterMuteMode() API must be called). * @param huart: UART handle. * @retval HAL status */ HAL_StatusTypeDef HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef *huart) { /* Process Locked */ __HAL_LOCK(huart); huart->gState = HAL_UART_STATE_BUSY; /* Enable USART mute mode by setting the MME bit in the CR1 register */ huart->Instance->CR1 |= USART_CR1_MME; huart->gState = HAL_UART_STATE_READY; return (UART_CheckIdleState(huart)); } /** * @brief Disable UART mute mode (does not mean the UART actually exits mute mode * as it may not have been in mute mode at this very moment). * @param huart: UART handle. * @retval HAL status */ HAL_StatusTypeDef HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef *huart) { /* Process Locked */ __HAL_LOCK(huart); huart->gState = HAL_UART_STATE_BUSY; /* Disable USART mute mode by clearing the MME bit in the CR1 register */ huart->Instance->CR1 &= ~(USART_CR1_MME); huart->gState = HAL_UART_STATE_READY; return (UART_CheckIdleState(huart)); } /** * @brief Enter UART mute mode (means UART actually enters mute mode). * @note To exit from mute mode, HAL_MultiProcessor_DisableMuteMode() API must be called. * @param huart: UART handle. * @retval None */ void HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart) { __HAL_UART_SEND_REQ(huart, UART_MUTE_MODE_REQUEST); } /** * @brief Enable the UART transmitter and disable the UART receiver. * @param huart: UART handle. * @retval HAL status */ HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart) { /* Process Locked */ __HAL_LOCK(huart); huart->gState = HAL_UART_STATE_BUSY; /* Clear TE and RE bits */ CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE)); /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */ SET_BIT(huart->Instance->CR1, USART_CR1_TE); huart->gState = HAL_UART_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(huart); return HAL_OK; } /** * @brief Enable the UART receiver and disable the UART transmitter. * @param huart: UART handle. * @retval HAL status. */ HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart) { /* Process Locked */ __HAL_LOCK(huart); huart->gState = HAL_UART_STATE_BUSY; /* Clear TE and RE bits */ CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE)); /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */ SET_BIT(huart->Instance->CR1, USART_CR1_RE); huart->gState = HAL_UART_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(huart); return HAL_OK; } /** * @brief Transmit break characters. * @param huart: UART handle. * @retval HAL status */ HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart) { /* Check the parameters */ assert_param(IS_UART_LIN_INSTANCE(huart->Instance)); /* Process Locked */ __HAL_LOCK(huart); huart->gState = HAL_UART_STATE_BUSY; /* Send break characters */ huart->Instance->RQR |= UART_SENDBREAK_REQUEST; huart->gState = HAL_UART_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(huart); return HAL_OK; } /** * @} */ /** @defgroup UART_Exported_Functions_Group4 Peripheral State and Error functions * @brief UART Peripheral State functions * @verbatim ============================================================================== ##### Peripheral State and Error functions ##### ============================================================================== [..] This subsection provides functions allowing to : (+) Return the UART handle state. (+) Return the UART handle error code @endverbatim * @{ */ /** * @brief Return the UART handle state. * @param huart Pointer to a UART_HandleTypeDef structure that contains * the configuration information for the specified UART. * @retval HAL state */ HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart) { uint32_t temp1= 0x00, temp2 = 0x00; temp1 = huart->gState; temp2 = huart->RxState; return (HAL_UART_StateTypeDef)(temp1 | temp2); } /** * @brief Return the UART handle error code. * @param huart Pointer to a UART_HandleTypeDef structure that contains * the configuration information for the specified UART. * @retval UART Error Code */ uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart) { return huart->ErrorCode; } /** * @} */ /** * @} */ /** @defgroup UART_Private_Functions UART Private Functions * @{ */ /** * @brief Configure the UART peripheral. * @param huart: UART handle. * @retval HAL status */ HAL_StatusTypeDef UART_SetConfig(UART_HandleTypeDef *huart) { uint32_t tmpreg = 0x00000000; UART_ClockSourceTypeDef clocksource = UART_CLOCKSOURCE_UNDEFINED; uint16_t brrtemp = 0x0000; uint16_t usartdiv = 0x0000; HAL_StatusTypeDef ret = HAL_OK; /* Check the parameters */ assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate)); assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength)); assert_param(IS_UART_STOPBITS(huart->Init.StopBits)); assert_param(IS_UART_PARITY(huart->Init.Parity)); assert_param(IS_UART_MODE(huart->Init.Mode)); assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl)); assert_param(IS_UART_ONE_BIT_SAMPLE(huart->Init.OneBitSampling)); assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling)); /*-------------------------- USART CR1 Configuration -----------------------*/ /* Clear M, PCE, PS, TE, RE and OVER8 bits and configure * the UART Word Length, Parity, Mode and oversampling: * set the M bits according to huart->Init.WordLength value * set PCE and PS bits according to huart->Init.Parity value * set TE and RE bits according to huart->Init.Mode value * set OVER8 bit according to huart->Init.OverSampling value */ tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling ; MODIFY_REG(huart->Instance->CR1, UART_CR1_FIELDS, tmpreg); /*-------------------------- USART CR2 Configuration -----------------------*/ /* Configure the UART Stop Bits: Set STOP[13:12] bits according * to huart->Init.StopBits value */ MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits); /*-------------------------- USART CR3 Configuration -----------------------*/ /* Configure * - UART HardWare Flow Control: set CTSE and RTSE bits according * to huart->Init.HwFlowCtl value * - one-bit sampling method versus three samples' majority rule according * to huart->Init.OneBitSampling */ tmpreg = (uint32_t)huart->Init.HwFlowCtl | huart->Init.OneBitSampling ; MODIFY_REG(huart->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE | USART_CR3_ONEBIT), tmpreg); /*-------------------------- USART BRR Configuration -----------------------*/ UART_GETCLOCKSOURCE(huart, clocksource); /* Check UART Over Sampling to set Baud Rate Register */ if (huart->Init.OverSampling == UART_OVERSAMPLING_8) { switch (clocksource) { case UART_CLOCKSOURCE_PCLK1: usartdiv = (uint16_t)(UART_DIV_SAMPLING8(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate)); break; case UART_CLOCKSOURCE_PCLK2: usartdiv = (uint16_t)(UART_DIV_SAMPLING8(HAL_RCC_GetPCLK2Freq(), huart->Init.BaudRate)); break; case UART_CLOCKSOURCE_HSI: usartdiv = (uint16_t)(UART_DIV_SAMPLING8(HSI_VALUE, huart->Init.BaudRate)); break; case UART_CLOCKSOURCE_SYSCLK: usartdiv = (uint16_t)(UART_DIV_SAMPLING8(HAL_RCC_GetSysClockFreq(), huart->Init.BaudRate)); break; case UART_CLOCKSOURCE_LSE: usartdiv = (uint16_t)(UART_DIV_SAMPLING8(LSE_VALUE, huart->Init.BaudRate)); break; case UART_CLOCKSOURCE_UNDEFINED: default: ret = HAL_ERROR; break; } brrtemp = usartdiv & 0xFFF0; brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000F) >> 1U); huart->Instance->BRR = brrtemp; } else { switch (clocksource) { case UART_CLOCKSOURCE_PCLK1: huart->Instance->BRR = (uint16_t)(UART_DIV_SAMPLING16(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate)); break; case UART_CLOCKSOURCE_PCLK2: huart->Instance->BRR = (uint16_t)(UART_DIV_SAMPLING16(HAL_RCC_GetPCLK2Freq(), huart->Init.BaudRate)); break; case UART_CLOCKSOURCE_HSI: huart->Instance->BRR = (uint16_t)(UART_DIV_SAMPLING16(HSI_VALUE, huart->Init.BaudRate)); break; case UART_CLOCKSOURCE_SYSCLK: huart->Instance->BRR = (uint16_t)(UART_DIV_SAMPLING16(HAL_RCC_GetSysClockFreq(), huart->Init.BaudRate)); break; case UART_CLOCKSOURCE_LSE: huart->Instance->BRR = (uint16_t)(UART_DIV_SAMPLING16(LSE_VALUE, huart->Init.BaudRate)); break; case UART_CLOCKSOURCE_UNDEFINED: default: ret = HAL_ERROR; break; } } return ret; } /** * @brief Configure the UART peripheral advanced features. * @param huart: UART handle. * @retval None */ void UART_AdvFeatureConfig(UART_HandleTypeDef *huart) { /* Check whether the set of advanced features to configure is properly set */ assert_param(IS_UART_ADVFEATURE_INIT(huart->AdvancedInit.AdvFeatureInit)); /* if required, configure TX pin active level inversion */ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_TXINVERT_INIT)) { assert_param(IS_UART_ADVFEATURE_TXINV(huart->AdvancedInit.TxPinLevelInvert)); MODIFY_REG(huart->Instance->CR2, USART_CR2_TXINV, huart->AdvancedInit.TxPinLevelInvert); } /* if required, configure RX pin active level inversion */ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXINVERT_INIT)) { assert_param(IS_UART_ADVFEATURE_RXINV(huart->AdvancedInit.RxPinLevelInvert)); MODIFY_REG(huart->Instance->CR2, USART_CR2_RXINV, huart->AdvancedInit.RxPinLevelInvert); } /* if required, configure data inversion */ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DATAINVERT_INIT)) { assert_param(IS_UART_ADVFEATURE_DATAINV(huart->AdvancedInit.DataInvert)); MODIFY_REG(huart->Instance->CR2, USART_CR2_DATAINV, huart->AdvancedInit.DataInvert); } /* if required, configure RX/TX pins swap */ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_SWAP_INIT)) { assert_param(IS_UART_ADVFEATURE_SWAP(huart->AdvancedInit.Swap)); MODIFY_REG(huart->Instance->CR2, USART_CR2_SWAP, huart->AdvancedInit.Swap); } /* if required, configure RX overrun detection disabling */ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXOVERRUNDISABLE_INIT)) { assert_param(IS_UART_OVERRUN(huart->AdvancedInit.OverrunDisable)); MODIFY_REG(huart->Instance->CR3, USART_CR3_OVRDIS, huart->AdvancedInit.OverrunDisable); } /* if required, configure DMA disabling on reception error */ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DMADISABLEONERROR_INIT)) { assert_param(IS_UART_ADVFEATURE_DMAONRXERROR(huart->AdvancedInit.DMADisableonRxError)); MODIFY_REG(huart->Instance->CR3, USART_CR3_DDRE, huart->AdvancedInit.DMADisableonRxError); } /* if required, configure auto Baud rate detection scheme */ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_AUTOBAUDRATE_INIT)) { assert_param(IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(huart->Instance)); assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATE(huart->AdvancedInit.AutoBaudRateEnable)); MODIFY_REG(huart->Instance->CR2, USART_CR2_ABREN, huart->AdvancedInit.AutoBaudRateEnable); /* set auto Baudrate detection parameters if detection is enabled */ if (huart->AdvancedInit.AutoBaudRateEnable == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE) { assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(huart->AdvancedInit.AutoBaudRateMode)); MODIFY_REG(huart->Instance->CR2, USART_CR2_ABRMODE, huart->AdvancedInit.AutoBaudRateMode); } } /* if required, configure MSB first on communication line */ if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_MSBFIRST_INIT)) { assert_param(IS_UART_ADVFEATURE_MSBFIRST(huart->AdvancedInit.MSBFirst)); MODIFY_REG(huart->Instance->CR2, USART_CR2_MSBFIRST, huart->AdvancedInit.MSBFirst); } } /** * @brief Check the UART Idle State. * @param huart: UART handle. * @retval HAL status */ HAL_StatusTypeDef UART_CheckIdleState(UART_HandleTypeDef *huart) { /* Initialize the UART ErrorCode */ huart->ErrorCode = HAL_UART_ERROR_NONE; /* Check if the Transmitter is enabled */ if((huart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE) { /* Wait until TEACK flag is set */ if(UART_WaitOnFlagUntilTimeout(huart, USART_ISR_TEACK, RESET, UART_TEACK_REACK_TIMEOUT) != HAL_OK) { /* Timeout Occured */ return HAL_TIMEOUT; } } /* Check if the Receiver is enabled */ if((huart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE) { /* Wait until REACK flag is set */ if(UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, UART_TEACK_REACK_TIMEOUT) != HAL_OK) { /* Timeout Occured */ return HAL_TIMEOUT; } } /* Initialize the UART State */ huart->gState= HAL_UART_STATE_READY; huart->RxState= HAL_UART_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(huart); return HAL_OK; } /** * @brief Handle UART Communication Timeout. * @param huart: UART handle. * @param Flag: specifies the UART flag to check. * @param Status: the Flag status (SET or RESET). * @param Timeout: Timeout duration. * @retval HAL status */ HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Timeout) { uint32_t tickstart = HAL_GetTick(); /* Wait until flag is set */ if(Status == RESET) { while(__HAL_UART_GET_FLAG(huart, Flag) == RESET) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout)) { /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ __HAL_UART_DISABLE_IT(huart, UART_IT_TXE); __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE); __HAL_UART_DISABLE_IT(huart, UART_IT_PE); __HAL_UART_DISABLE_IT(huart, UART_IT_ERR); huart->gState = HAL_UART_STATE_READY; huart->RxState = HAL_UART_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(huart); return HAL_TIMEOUT; } } } } else { while(__HAL_UART_GET_FLAG(huart, Flag) != RESET) { /* Check for the Timeout */ if(Timeout != HAL_MAX_DELAY) { if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout)) { /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ __HAL_UART_DISABLE_IT(huart, UART_IT_TXE); __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE); __HAL_UART_DISABLE_IT(huart, UART_IT_PE); __HAL_UART_DISABLE_IT(huart, UART_IT_ERR); huart->gState = HAL_UART_STATE_READY; huart->RxState = HAL_UART_STATE_READY; /* Process Unlocked */ __HAL_UNLOCK(huart); return HAL_TIMEOUT; } } } } return HAL_OK; } /** * @brief DMA UART transmit process complete callback. * @param hdma: DMA handle. * @retval None */ static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma) { UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* DMA Normal mode */ if ( HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC) ) { huart->TxXferCount = 0; /* Disable the DMA transfer for transmit request by resetting the DMAT bit in the UART CR3 register */ huart->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_DMAT); /* Enable the UART Transmit Complete Interrupt */ __HAL_UART_ENABLE_IT(huart, UART_IT_TC); } /* DMA Circular mode */ else { HAL_UART_TxCpltCallback(huart); } } /** * @brief DMA UART transmit process half complete callback. * @param hdma : DMA handle. * @retval None */ static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma) { UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; HAL_UART_TxHalfCpltCallback(huart); } /** * @brief DMA UART receive process complete callback. * @param hdma: DMA handle. * @retval None */ static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma) { UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* DMA Normal mode */ if ( HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC) ) { huart->RxXferCount = 0; /* Disable the DMA transfer for the receiver request by resetting the DMAR bit in the UART CR3 register */ huart->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_DMAR); /* At end of Rx process, restore huart->RxState to Ready */ huart->RxState = HAL_UART_STATE_READY; } HAL_UART_RxCpltCallback(huart); } /** * @brief DMA UART receive process half complete callback. * @param hdma : DMA handle. * @retval None */ static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma) { UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; HAL_UART_RxHalfCpltCallback(huart); } /** * @brief DMA UART communication error callback. * @param hdma: DMA handle. * @retval None */ static void UART_DMAError(DMA_HandleTypeDef *hdma) { UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; huart->RxXferCount = 0; huart->TxXferCount = 0; huart->gState= HAL_UART_STATE_READY; huart->RxState= HAL_UART_STATE_READY; huart->ErrorCode |= HAL_UART_ERROR_DMA; HAL_UART_ErrorCallback(huart); } /** * @brief Send an amount of data in interrupt mode. * @note Function is called under interruption only, once * interruptions have been enabled by HAL_UART_Transmit_IT(). * @param huart: UART handle. * @retval HAL status */ HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart) { uint16_t* tmp; /* Check that a Tx process is ongoing */ if (huart->gState == HAL_UART_STATE_BUSY_TX) { if(huart->TxXferCount == 0) { /* Disable the UART Transmit Data Register Empty Interrupt */ __HAL_UART_DISABLE_IT(huart, UART_IT_TXE); /* Enable the UART Transmit Complete Interrupt */ __HAL_UART_ENABLE_IT(huart, UART_IT_TC); return HAL_OK; } else { if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) { tmp = (uint16_t*) huart->pTxBuffPtr; huart->Instance->TDR = (*tmp & (uint16_t)0x01FF); huart->pTxBuffPtr += 2; } else { huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0xFF); } huart->TxXferCount--; return HAL_OK; } } else { return HAL_BUSY; } } /** * @brief Wrap up transmission in non-blocking mode. * @param huart: pointer to a UART_HandleTypeDef structure that contains * the configuration information for the specified UART module. * @retval HAL status */ HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart) { /* Disable the UART Transmit Complete Interrupt */ __HAL_UART_DISABLE_IT(huart, UART_IT_TC); /* Tx process is ended, restore huart->gState to Ready */ huart->gState = HAL_UART_STATE_READY; HAL_UART_TxCpltCallback(huart); return HAL_OK; } /** * @brief Receive an amount of data in interrupt mode. * @note Function is called under interruption only, once * interruptions have been enabled by HAL_UART_Receive_IT() * @param huart: UART handle. * @retval HAL status */ HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart) { uint16_t* tmp; uint16_t uhMask = huart->Mask; /* Check that a Rx process is ongoing */ if(huart->RxState == HAL_UART_STATE_BUSY_RX) { if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) { tmp = (uint16_t*) huart->pRxBuffPtr ; *tmp = (uint16_t)(huart->Instance->RDR & uhMask); huart->pRxBuffPtr +=2; } else { *huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask); } if(--huart->RxXferCount == 0) { __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE); /* Disable the UART Parity Error Interrupt */ __HAL_UART_DISABLE_IT(huart, UART_IT_PE); /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ __HAL_UART_DISABLE_IT(huart, UART_IT_ERR); /* Rx process is completed, restore huart->RxState to Ready */ huart->RxState = HAL_UART_STATE_READY; HAL_UART_RxCpltCallback(huart); return HAL_OK; } return HAL_OK; } else { /* Clear RXNE interrupt flag */ __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); return HAL_BUSY; } } /** * @brief Initializes the UART wake-up from stop mode parameters when triggered by address detection. * @param huart: UART handle * @param WakeUpSelection: UART wake up from stop mode parameters * @retval HAL status */ void UART_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection) { assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength)); /* Set the USART address length */ MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength); /* Set the USART address node */ MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS)); } /** * @} */ #endif /* HAL_UART_MODULE_ENABLED */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/