/** ****************************************************************************** * @file stm32f3xx_ll_tim.c * @author MCD Application Team * @version V1.3.0 * @date 01-July-2016 * @brief TIM LL module driver. ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2016 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ #if defined(USE_FULL_LL_DRIVER) /* Includes ------------------------------------------------------------------*/ #include "stm32f3xx_ll_tim.h" #include "stm32f3xx_ll_bus.h" #ifdef USE_FULL_ASSERT #include "stm32_assert.h" #else #define assert_param(expr) ((void)0U) #endif /** @addtogroup STM32F3xx_LL_Driver * @{ */ #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM12) || defined (TIM13) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM18) || defined (TIM19) || defined (TIM20) /** @addtogroup TIM_LL * @{ */ /* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private constants ---------------------------------------------------------*/ /* Private macros ------------------------------------------------------------*/ /** @addtogroup TIM_LL_Private_Macros * @{ */ #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \ || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \ || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \ || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \ || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN)) #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \ || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \ || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4)) #if defined(TIM_CCMR1_OC1M_3) #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \ || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \ || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \ || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \ || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \ || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \ || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \ || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \ || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \ || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \ || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \ || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \ || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM1) \ || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM2)) #else #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \ || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \ || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \ || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \ || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \ || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \ || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \ || ((__VALUE__) == LL_TIM_OCMODE_PWM2)) #endif #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \ || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE)) #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \ || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW)) #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \ || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH)) #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \ || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \ || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC)) #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \ || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \ || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \ || ((__VALUE__) == LL_TIM_ICPSC_DIV8)) #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \ || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8)) #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \ || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \ || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE)) #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \ || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \ || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12)) #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \ || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING)) /** * @} */ /* Private function prototypes -----------------------------------------------*/ /** @defgroup TIM_LL_Private_Functions TIM Private Functions * @{ */ static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); #if defined(TIM_CCER_CC5E) static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); #endif /* TIM_CCER_CC5E */ #if defined(TIM_CCER_CC6E) static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct); #endif /* TIM_CCER_CC6E */ static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @addtogroup TIM_LL_Exported_Functions * @{ */ /** @addtogroup TIM_LL_EF_Init * @{ */ /** * @brief Set TIMx registers to their reset values. * @param TIMx Timer instance * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: invalid TIMx instance */ ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx) { ErrorStatus result = SUCCESS; /* Check the parameters */ assert_param(IS_TIM_INSTANCE(TIMx)); if (TIMx == TIM2) { LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2); LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2); } #if defined(TIM1) else if (TIMx == TIM1) { LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1); LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1); } #endif #if defined(TIM3) else if (TIMx == TIM3) { LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3); LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3); } #endif #if defined(TIM4) else if (TIMx == TIM4) { LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4); LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4); } #endif #if defined(TIM5) else if (TIMx == TIM5) { LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5); LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5); } #endif #if defined(TIM6) else if (TIMx == TIM6) { LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6); LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6); } #endif #if defined(TIM7) else if (TIMx == TIM7) { LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7); LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7); } #endif #if defined(TIM8) else if (TIMx == TIM8) { LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8); LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8); } #endif #if defined(TIM12) else if (TIMx == TIM12) { LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM12); LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM12); } #endif #if defined(TIM13) else if (TIMx == TIM13) { LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM13); LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM13); } #endif #if defined(TIM14) else if (TIMx == TIM14) { LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14); LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14); } #endif #if defined(TIM15) else if (TIMx == TIM15) { LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM15); LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM15); } #endif #if defined(TIM16) else if (TIMx == TIM16) { LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16); LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16); } #endif #if defined(TIM17) else if (TIMx == TIM17) { LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17); LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17); } #endif #if defined(TIM18) else if (TIMx == TIM18) { LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM18); LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM18); } #endif #if defined(TIM19) else if (TIMx == TIM19) { LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM19); LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM19); } #endif #if defined(TIM20) else if (TIMx == TIM20) { LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM20); LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM20); } #endif else { result = ERROR; } return result; } /** * @brief Set the fields of the time base unit configuration data structure * to their default values. * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure) * @retval None */ void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct) { /* Set the default configuration */ TIM_InitStruct->Prescaler = (uint16_t)0x0000U; TIM_InitStruct->CounterMode = LL_TIM_COUNTERMODE_UP; TIM_InitStruct->Autoreload = (uint32_t)0xFFFFFFFFU; TIM_InitStruct->ClockDivision = LL_TIM_CLOCKDIVISION_DIV1; TIM_InitStruct->RepetitionCounter = (uint8_t)0x00U; } /** * @brief Configure the TIMx time base unit. * @param TIMx Timer Instance * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure) * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct) { uint32_t tmpcr1 = 0U; /* Check the parameters */ assert_param(IS_TIM_INSTANCE(TIMx)); assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode)); assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision)); tmpcr1 = LL_TIM_ReadReg(TIMx, CR1); if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx)) { /* Select the Counter Mode */ MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode); } if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx)) { /* Set the clock division */ MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision); } /* Write to TIMx CR1 */ LL_TIM_WriteReg(TIMx, CR1, tmpcr1); /* Set the Autoreload value */ LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload); /* Set the Prescaler value */ LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler); if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx)) { /* Set the Repetition Counter value */ LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter); } /* Generate an update event to reload the Prescaler and the repetition counter value (if applicable) immediately */ LL_TIM_GenerateEvent_UPDATE(TIMx); return SUCCESS; } /** * @brief Set the fields of the TIMx output channel configuration data * structure to their default values. * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure) * @retval None */ void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct) { /* Set the default configuration */ TIM_OC_InitStruct->OCMode = LL_TIM_OCMODE_FROZEN; TIM_OC_InitStruct->OCState = LL_TIM_OCSTATE_DISABLE; TIM_OC_InitStruct->OCNState = LL_TIM_OCSTATE_DISABLE; TIM_OC_InitStruct->CompareValue = (uint32_t)0x00000000U; TIM_OC_InitStruct->OCPolarity = LL_TIM_OCPOLARITY_HIGH; TIM_OC_InitStruct->OCNPolarity = LL_TIM_OCPOLARITY_HIGH; TIM_OC_InitStruct->OCIdleState = LL_TIM_OCIDLESTATE_LOW; TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW; } /** * @brief Configure the TIMx output channel. * @param TIMx Timer Instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @arg @ref LL_TIM_CHANNEL_CH5 * @arg @ref LL_TIM_CHANNEL_CH6 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure) * @note OC5 and OC6 are not available for all F3 devices * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx output channel is initialized * - ERROR: TIMx output channel is not initialized */ ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct) { ErrorStatus result = ERROR; switch (Channel) { case LL_TIM_CHANNEL_CH1: result = OC1Config(TIMx, TIM_OC_InitStruct); break; case LL_TIM_CHANNEL_CH2: result = OC2Config(TIMx, TIM_OC_InitStruct); break; case LL_TIM_CHANNEL_CH3: result = OC3Config(TIMx, TIM_OC_InitStruct); break; case LL_TIM_CHANNEL_CH4: result = OC4Config(TIMx, TIM_OC_InitStruct); break; #if defined(TIM_CCER_CC5E) case LL_TIM_CHANNEL_CH5: result = OC5Config(TIMx, TIM_OC_InitStruct); break; case LL_TIM_CHANNEL_CH6: result = OC6Config(TIMx, TIM_OC_InitStruct); break; #endif /* TIM_CCER_CC5E */ default: break; } return result; } /** * @brief Set the fields of the TIMx input channel configuration data * structure to their default values. * @param TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure) * @retval None */ void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) { /* Set the default configuration */ TIM_ICInitStruct->ICPolarity = LL_TIM_IC_POLARITY_RISING; TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI; TIM_ICInitStruct->ICPrescaler = LL_TIM_ICPSC_DIV1; TIM_ICInitStruct->ICFilter = LL_TIM_IC_FILTER_FDIV1; } /** * @brief Configure the TIMx input channel. * @param TIMx Timer Instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @param TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure) * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx output channel is initialized * - ERROR: TIMx output channel is not initialized */ ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct) { ErrorStatus result = ERROR; switch (Channel) { case LL_TIM_CHANNEL_CH1: result = IC1Config(TIMx, TIM_IC_InitStruct); break; case LL_TIM_CHANNEL_CH2: result = IC2Config(TIMx, TIM_IC_InitStruct); break; case LL_TIM_CHANNEL_CH3: result = IC3Config(TIMx, TIM_IC_InitStruct); break; case LL_TIM_CHANNEL_CH4: result = IC4Config(TIMx, TIM_IC_InitStruct); break; default: break; } return result; } /** * @brief Fills each TIM_EncoderInitStruct field with its default value * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure) * @retval None */ void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct) { /* Set the default configuration */ TIM_EncoderInitStruct->EncoderMode = LL_TIM_ENCODERMODE_X2_TI1; TIM_EncoderInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING; TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI; TIM_EncoderInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1; TIM_EncoderInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1; TIM_EncoderInitStruct->IC2Polarity = LL_TIM_IC_POLARITY_RISING; TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI; TIM_EncoderInitStruct->IC2Prescaler = LL_TIM_ICPSC_DIV1; TIM_EncoderInitStruct->IC2Filter = LL_TIM_IC_FILTER_FDIV1; } /** * @brief Configure the encoder interface of the timer instance. * @param TIMx Timer Instance * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure) * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct) { uint32_t tmpccmr1 = 0U; uint32_t tmpccer = 0U; /* Check the parameters */ assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx)); assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode)); assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity)); assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput)); assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler)); assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter)); assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity)); assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput)); assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler)); assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter)); /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */ TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E); /* Get the TIMx CCMR1 register value */ tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Configure TI1 */ tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC); tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U); tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U); tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U); /* Configure TI2 */ tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC); tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U); tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U); tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U); /* Set TI1 and TI2 polarity and enable TI1 and TI2 */ tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP); tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity); tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U); tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E); /* Set encoder mode */ LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode); /* Write to TIMx CCMR1 */ LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); return SUCCESS; } #if defined TIM_CR2_MMS2 /** * @brief Set the fields of the TIMx Hall sensor interface configuration data * structure to their default values. * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure) * @retval None */ void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct) { /* Set the default configuration */ TIM_HallSensorInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING; TIM_HallSensorInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1; TIM_HallSensorInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1; TIM_HallSensorInitStruct->CommutationDelay = (uint32_t)0U; } /** * @brief Configure the Hall sensor interface of the timer instance. * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR * to the TI1 input channel * @note TIMx slave mode controller is configured in reset mode. Selected internal trigger is TI1F_ED. * @note Channel 1 is configured as input, IC1 is mapped on TRC. * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed * between 2 changes on the inputs. It gives information about motor speed. * @note Channel 2 is configured in output PWM 2 mode. * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay. * @note OC2REF is selected as trigger output on TRGO. * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used * when TIMx operates in Hall sensor interface mode. * @param TIMx Timer Instance * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure) * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct) { uint32_t tmpcr2 = 0U; uint32_t tmpccmr1 = 0U; uint32_t tmpccer = 0U; uint32_t tmpsmcr = 0U; /* Check the parameters */ assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx)); assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity)); assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler)); assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter)); /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */ TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E); /* Get the TIMx CR2 register value */ tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); /* Get the TIMx CCMR1 register value */ tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Get the TIMx SMCR register value */ tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR); /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */ tmpcr2 |= TIM_CR2_TI1S; /* OC2REF signal is used as trigger output (TRGO) */ tmpcr2 |= LL_TIM_TRGO_OC2REF; /* Configure the slave mode controller */ tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS); tmpsmcr |= LL_TIM_TS_TI1F_ED; tmpsmcr |= LL_TIM_SLAVEMODE_RESET; /* Configure input channel 1 */ tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC); tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U); tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U); tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U); /* Configure input channel 2 */ tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE | TIM_CCMR1_OC2PE | TIM_CCMR1_OC2CE); tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U); /* Set Channel 1 polarity and enable Channel 1 and Channel2 */ tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP); tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity); tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E); /* Write to TIMx CR2 */ LL_TIM_WriteReg(TIMx, CR2, tmpcr2); /* Write to TIMx SMCR */ LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr); /* Write to TIMx CCMR1 */ LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); /* Write to TIMx CCR2 */ LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay); return SUCCESS; } #endif /* TIM_CR2_MMS2 */ /** * @} */ /** * @} */ /** @addtogroup TIM_LL_Private_Functions TIM Private Functions * @brief Private functions * @{ */ /** * @brief Configure the TIMx output channel 1. * @param TIMx Timer Instance * @param TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) { uint32_t tmpccmr1 = 0U; uint32_t tmpccer = 0U; uint32_t tmpcr2 = 0U; /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(TIMx)); assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); /* Disable the Channel 1: Reset the CC1E Bit */ CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Get the TIMx CR2 register value */ tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); /* Get the TIMx CCMR1 register value */ tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); /* Reset Capture/Compare selection Bits */ CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S); /* Set the Output Compare Mode */ MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode); /* Set the Output Compare Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity); /* Set the Output State */ MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState); if (IS_TIM_BREAK_INSTANCE(TIMx)) { assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); /* Set the complementary output Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U); /* Set the complementary output State */ MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U); /* Set the Output Idle state */ MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState); /* Set the complementary output Idle state */ MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U); } /* Write to TIMx CR2 */ LL_TIM_WriteReg(TIMx, CR2, tmpcr2); /* Write to TIMx CCMR1 */ LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); /* Set the Capture Compare Register value */ LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); return SUCCESS; } /** * @brief Configure the TIMx output channel 2. * @param TIMx Timer Instance * @param TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) { uint32_t tmpccmr1 = 0U; uint32_t tmpccer = 0U; uint32_t tmpcr2 = 0U; /* Check the parameters */ assert_param(IS_TIM_CC2_INSTANCE(TIMx)); assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); /* Disable the Channel 2: Reset the CC2E Bit */ CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Get the TIMx CR2 register value */ tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); /* Get the TIMx CCMR1 register value */ tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1); /* Reset Capture/Compare selection Bits */ CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S); /* Select the Output Compare Mode */ MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U); /* Set the Output Compare Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U); /* Set the Output State */ MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U); if (IS_TIM_BREAK_INSTANCE(TIMx)) { assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); /* Set the complementary output Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U); /* Set the complementary output State */ MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U); /* Set the Output Idle state */ MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U); /* Set the complementary output Idle state */ MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U); } /* Write to TIMx CR2 */ LL_TIM_WriteReg(TIMx, CR2, tmpcr2); /* Write to TIMx CCMR1 */ LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1); /* Set the Capture Compare Register value */ LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); return SUCCESS; } /** * @brief Configure the TIMx output channel 3. * @param TIMx Timer Instance * @param TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) { uint32_t tmpccmr2 = 0U; uint32_t tmpccer = 0U; uint32_t tmpcr2 = 0U; /* Check the parameters */ assert_param(IS_TIM_CC3_INSTANCE(TIMx)); assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); /* Disable the Channel 3: Reset the CC3E Bit */ CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Get the TIMx CR2 register value */ tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); /* Get the TIMx CCMR2 register value */ tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2); /* Reset Capture/Compare selection Bits */ CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S); /* Select the Output Compare Mode */ MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode); /* Set the Output Compare Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U); /* Set the Output State */ MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U); if (IS_TIM_BREAK_INSTANCE(TIMx)) { assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); /* Set the complementary output Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U); /* Set the complementary output State */ MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U); /* Set the Output Idle state */ MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U); /* Set the complementary output Idle state */ MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U); } /* Write to TIMx CR2 */ LL_TIM_WriteReg(TIMx, CR2, tmpcr2); /* Write to TIMx CCMR2 */ LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2); /* Set the Capture Compare Register value */ LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); return SUCCESS; } /** * @brief Configure the TIMx output channel 4. * @param TIMx Timer Instance * @param TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) { uint32_t tmpccmr2 = 0U; uint32_t tmpccer = 0U; uint32_t tmpcr2 = 0U; /* Check the parameters */ assert_param(IS_TIM_CC4_INSTANCE(TIMx)); assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); /* Disable the Channel 4: Reset the CC4E Bit */ CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Get the TIMx CR2 register value */ tmpcr2 = LL_TIM_ReadReg(TIMx, CR2); /* Get the TIMx CCMR2 register value */ tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2); /* Reset Capture/Compare selection Bits */ CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S); /* Select the Output Compare Mode */ MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U); /* Set the Output Compare Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U); /* Set the Output State */ MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U); if (IS_TIM_BREAK_INSTANCE(TIMx)) { assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); /* Set the Output Idle state */ MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U); } /* Write to TIMx CR2 */ LL_TIM_WriteReg(TIMx, CR2, tmpcr2); /* Write to TIMx CCMR2 */ LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2); /* Set the Capture Compare Register value */ LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); return SUCCESS; } #if defined(TIM_CCER_CC5E) /** * @brief Configure the TIMx output channel 5. * @param TIMx Timer Instance * @param TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure * @note OC5 is not available for all F3 devices * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) { uint32_t tmpccmr3 = 0U; uint32_t tmpccer = 0U; /* Check the parameters */ assert_param(IS_TIM_CC5_INSTANCE(TIMx)); assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); /* Disable the Channel 5: Reset the CC5E Bit */ CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Get the TIMx CCMR3 register value */ tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3); /* Select the Output Compare Mode */ MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode); /* Set the Output Compare Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U); /* Set the Output State */ MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U); if (IS_TIM_BREAK_INSTANCE(TIMx)) { assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); /* Set the Output Idle state */ MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U); } /* Write to TIMx CCMR3 */ LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3); /* Set the Capture Compare Register value */ LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); return SUCCESS; } /** * @brief Configure the TIMx output channel 6. * @param TIMx Timer Instance * @param TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure * @note OC6 is not available for all F3 devices * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct) { uint32_t tmpccmr3 = 0U; uint32_t tmpccer = 0U; /* Check the parameters */ assert_param(IS_TIM_CC6_INSTANCE(TIMx)); assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity)); assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity)); assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState)); /* Disable the Channel 5: Reset the CC6E Bit */ CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E); /* Get the TIMx CCER register value */ tmpccer = LL_TIM_ReadReg(TIMx, CCER); /* Get the TIMx CCMR3 register value */ tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3); /* Select the Output Compare Mode */ MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U); /* Set the Output Compare Polarity */ MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U); /* Set the Output State */ MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U); if (IS_TIM_BREAK_INSTANCE(TIMx)) { assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState)); assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState)); /* Set the Output Idle state */ MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U); } /* Write to TIMx CCMR3 */ LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3); /* Set the Capture Compare Register value */ LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue); /* Write to TIMx CCER */ LL_TIM_WriteReg(TIMx, CCER, tmpccer); return SUCCESS; } #endif /* TIM_CCER_CC5E */ /** * @brief Configure the TIMx input channel 1. * @param TIMx Timer Instance * @param TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) { /* Check the parameters */ assert_param(IS_TIM_CC1_INSTANCE(TIMx)); assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); /* Disable the Channel 1: Reset the CC1E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E; /* Select the Input and set the filter and the prescaler value */ MODIFY_REG(TIMx->CCMR1, (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC), (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U); /* Select the Polarity and set the CC1E Bit */ MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P | TIM_CCER_CC1NP), (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E)); return SUCCESS; } /** * @brief Configure the TIMx input channel 2. * @param TIMx Timer Instance * @param TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) { /* Check the parameters */ assert_param(IS_TIM_CC2_INSTANCE(TIMx)); assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); /* Disable the Channel 2: Reset the CC2E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E; /* Select the Input and set the filter and the prescaler value */ MODIFY_REG(TIMx->CCMR1, (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC), (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U); /* Select the Polarity and set the CC2E Bit */ MODIFY_REG(TIMx->CCER, (TIM_CCER_CC2P | TIM_CCER_CC2NP), ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E)); return SUCCESS; } /** * @brief Configure the TIMx input channel 3. * @param TIMx Timer Instance * @param TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) { /* Check the parameters */ assert_param(IS_TIM_CC3_INSTANCE(TIMx)); assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); /* Disable the Channel 3: Reset the CC3E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E; /* Select the Input and set the filter and the prescaler value */ MODIFY_REG(TIMx->CCMR2, (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC), (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U); /* Select the Polarity and set the CC3E Bit */ MODIFY_REG(TIMx->CCER, (TIM_CCER_CC3P | TIM_CCER_CC3NP), ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E)); return SUCCESS; } /** * @brief Configure the TIMx input channel 4. * @param TIMx Timer Instance * @param TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure * @retval An ErrorStatus enumeration value: * - SUCCESS: TIMx registers are de-initialized * - ERROR: not applicable */ static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct) { /* Check the parameters */ assert_param(IS_TIM_CC4_INSTANCE(TIMx)); assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity)); assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput)); assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler)); assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter)); /* Disable the Channel 4: Reset the CC4E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E; /* Select the Input and set the filter and the prescaler value */ MODIFY_REG(TIMx->CCMR2, (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC), (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U); /* Select the Polarity and set the CC2E Bit */ MODIFY_REG(TIMx->CCER, (TIM_CCER_CC4P | TIM_CCER_CC4NP), ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E)); return SUCCESS; } /** * @} */ /** * @} */ #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM12 || TIM13 || TIM14 || TIM15 || TIM16 || TIM17 || TIM18 || TIM19 || TIM20 */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/