stmbl/shared/comps/curpid.c

185 lines
4.2 KiB
C

#include "curpid_comp.h"
#include "commands.h"
#include "common.h"
#include "hal.h"
#include "math.h"
#include "defines.h"
#include "angle.h"
HAL_COMP(curpid);
// enable
HAL_PIN(en);
HAL_PIN(cmd_mode);
// current command
HAL_PIN(id_cmd);
HAL_PIN(iq_cmd);
// current feedback
HAL_PIN(id_fb);
HAL_PIN(iq_fb);
// HAL_PIN(ac_current);
// voltage output
HAL_PIN(ud);
HAL_PIN(uq);
// maximum output current and voltage
HAL_PIN(max_cur);
HAL_PIN(pwm_volt);
// d, q resistance and inductance
HAL_PIN(r);
HAL_PIN(ld);
HAL_PIN(lq);
// torque constant
HAL_PIN(psi);
HAL_PIN(ff); // r feed forward
HAL_PIN(kp);
HAL_PIN(ki);
HAL_PIN(ksp); // predictor
HAL_PIN(kind); // bemf feed forward
HAL_PIN(kci);
HAL_PIN(scale);
HAL_PIN(vel); // velocity input
// current error outputs
HAL_PIN(id_error);
HAL_PIN(iq_error);
struct curpid_ctx_t {
float id_error_sum;
float iq_error_sum;
};
static void nrt_init(void *ctx_ptr, hal_pin_inst_t *pin_ptr) {
// struct curpid_ctx_t * ctx = (struct curpid_ctx_t *)ctx_ptr;
struct curpid_pin_ctx_t *pins = (struct curpid_pin_ctx_t *)pin_ptr;
PIN(r) = 0.5;
PIN(ld) = 0.01;
PIN(lq) = 0.01;
PIN(psi) = 0.05;
PIN(kp) = 0.1;
PIN(ki) = 0.005;
PIN(kci) = 500.0;
PIN(ksp) = 1.0;
PIN(scale) = 1.0;
}
static void rt_func(float period, void *ctx_ptr, hal_pin_inst_t *pin_ptr) {
struct curpid_ctx_t *ctx = (struct curpid_ctx_t *)ctx_ptr;
struct curpid_pin_ctx_t *pins = (struct curpid_pin_ctx_t *)pin_ptr;
float r = MAX(PIN(r), 0.1);
float ld = MAX(PIN(ld), 0.001);
float lq = MAX(PIN(lq), 0.001);
float ff = PIN(ff);
float kind = PIN(kind);
float kpd = ld * PIN(kp) / period / 2.0;
float kid = r * PIN(ki) / ld;
float kpq = lq * PIN(kp) / period / 2.0;
float kiq = r * PIN(ki) / lq;
float max_cur = MAX(PIN(max_cur), 0.01);
float idc = PIN(id_cmd);
float iqc = PIN(iq_cmd);
float max_volt = PIN(pwm_volt);
float id = PIN(id_fb);
float iq = PIN(iq_fb);
// float ac_current = id * id + iq * iq; //sqrtf(id * id + iq * iq);
// PIN(ac_current) = ac_current;
float abscur;
float absvolt;
if(PIN(cmd_mode) == VOLT_MODE) {
absvolt = idc * idc + iqc * iqc; // clamp cmd
PIN(scale) *= sqrtf(CLAMP(max_volt * max_volt / MAX(absvolt, max_volt * 0.1), 0.0, 1.0));
abscur = id * id + iq * iq; // clamp over fb
PIN(scale) += (max_cur * max_cur - abscur) * PIN(kci) * period;
}
else{
abscur = idc * idc + iqc * iqc; // clamp cmd
PIN(scale) = sqrtf(max_cur * max_cur / MAX(abscur, max_cur * 0.1));
}
PIN(scale) = CLAMP(PIN(scale), 0.0, 1.0);
idc *= PIN(scale);
iqc *= PIN(scale);
float vel = PIN(vel);
float psi_d = ld * id + PIN(psi);
float psi_q = lq * iq;
float indd = vel * psi_q;
float indq = vel * psi_d;
// predictor to cancel pwm delay
id += (PIN(ud) - r * id + indd) / ld * period * PIN(ksp);
iq += (PIN(uq) - r * iq - indq) / lq * period * PIN(ksp);
float id_error = idc - id;
float iq_error = iqc - iq;
float ud = LIMIT(ff * r * idc - kind * indd + kpd * id_error, max_volt);
float uq = LIMIT(ff * r * iqc + kind * indq + kpq * iq_error, max_volt);
if(kpd * kid > 0.0 && kpq * kiq > 0.0) {
ctx->id_error_sum = LIMIT(ctx->id_error_sum + kpd * kid * id_error * period, max_volt - ud);
ctx->iq_error_sum = LIMIT(ctx->iq_error_sum + kpq * kiq * iq_error * period, max_volt - uq);
} else {
ctx->id_error_sum = 0.0;
ctx->iq_error_sum = 0.0;
}
ud += ctx->id_error_sum;
uq += ctx->iq_error_sum;
if(PIN(cmd_mode) == VOLT_MODE) {
ud = idc;
uq = iqc;
ctx->id_error_sum = 0.0;
ctx->iq_error_sum = 0.0;
id_error = 0.0;
iq_error = 0.0;
}
if(PIN(en) <= 0.0) {
ud = 0.0;
uq = 0.0;
ctx->id_error_sum = 0.0;
ctx->iq_error_sum = 0.0;
}
PIN(ud) = ud;
PIN(uq) = uq;
PIN(id_error) = id_error;
PIN(iq_error) = iq_error;
}
hal_comp_t curpid_comp_struct = {
.name = "curpid",
.nrt = 0,
.rt = rt_func,
.frt = 0,
.nrt_init = nrt_init,
.rt_start = 0,
.frt_start = 0,
.rt_stop = 0,
.frt_stop = 0,
.ctx_size = sizeof(struct curpid_ctx_t),
.pin_count = sizeof(struct curpid_pin_ctx_t) / sizeof(struct hal_pin_inst_t),
};