1
0
mirror of https://github.com/rene-dev/stmbl.git synced 2024-12-25 10:02:18 +00:00
stmbl/lib/STM32F3xx_HAL_Driver/Inc/stm32f3xx_ll_spi.h
2017-01-18 14:38:39 +01:00

2265 lines
75 KiB
C

/**
******************************************************************************
* @file stm32f3xx_ll_spi.h
* @author MCD Application Team
* @version V1.3.0
* @date 01-July-2016
* @brief Header file of SPI LL module.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32F3xx_LL_SPI_H
#define __STM32F3xx_LL_SPI_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32f3xx.h"
/** @addtogroup STM32F3xx_LL_Driver
* @{
*/
#if defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4)
/** @defgroup SPI_LL SPI
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup SPI_LL_ES_INIT SPI Exported Init structure
* @{
*/
/**
* @brief SPI Init structures definition
*/
typedef struct
{
uint32_t TransferDirection; /*!< Specifies the SPI unidirectional or bidirectional data mode.
This parameter can be a value of @ref SPI_LL_EC_TRANSFER_MODE.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferDirection().*/
uint32_t Mode; /*!< Specifies the SPI mode (Master/Slave).
This parameter can be a value of @ref SPI_LL_EC_MODE.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetMode().*/
uint32_t DataWidth; /*!< Specifies the SPI data width.
This parameter can be a value of @ref SPI_LL_EC_DATAWIDTH.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetDataWidth().*/
uint32_t ClockPolarity; /*!< Specifies the serial clock steady state.
This parameter can be a value of @ref SPI_LL_EC_POLARITY.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPolarity().*/
uint32_t ClockPhase; /*!< Specifies the clock active edge for the bit capture.
This parameter can be a value of @ref SPI_LL_EC_PHASE.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetClockPhase().*/
uint32_t NSS; /*!< Specifies whether the NSS signal is managed by hardware (NSS pin) or by software using the SSI bit.
This parameter can be a value of @ref SPI_LL_EC_NSS_MODE.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetNSSMode().*/
uint32_t BaudRate; /*!< Specifies the BaudRate prescaler value which will be used to configure the transmit and receive SCK clock.
This parameter can be a value of @ref SPI_LL_EC_BAUDRATEPRESCALER.
@note The communication clock is derived from the master clock. The slave clock does not need to be set.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetBaudRatePrescaler().*/
uint32_t BitOrder; /*!< Specifies whether data transfers start from MSB or LSB bit.
This parameter can be a value of @ref SPI_LL_EC_BIT_ORDER.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetTransferBitOrder().*/
uint32_t CRCCalculation; /*!< Specifies if the CRC calculation is enabled or not.
This parameter can be a value of @ref SPI_LL_EC_CRC_CALCULATION.
This feature can be modified afterwards using unitary functions @ref LL_SPI_EnableCRC() and @ref LL_SPI_DisableCRC().*/
uint32_t CRCPoly; /*!< Specifies the polynomial used for the CRC calculation.
This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF.
This feature can be modified afterwards using unitary function @ref LL_SPI_SetCRCPolynomial().*/
} LL_SPI_InitTypeDef;
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/* Exported constants --------------------------------------------------------*/
/** @defgroup SPI_LL_Exported_Constants SPI Exported Constants
* @{
*/
/** @defgroup SPI_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_SPI_ReadReg function
* @{
*/
#define LL_SPI_SR_RXNE SPI_SR_RXNE /*!< Rx buffer not empty flag */
#define LL_SPI_SR_TXE SPI_SR_TXE /*!< Tx buffer empty flag */
#define LL_SPI_SR_BSY SPI_SR_BSY /*!< Busy flag */
#define LL_SPI_SR_UDR SPI_SR_UDR /*!< Underrun flag */
#define LL_SPI_SR_CRCERR SPI_SR_CRCERR /*!< CRC error flag */
#define LL_SPI_SR_MODF SPI_SR_MODF /*!< Mode fault flag */
#define LL_SPI_SR_OVR SPI_SR_OVR /*!< Overrun flag */
#define LL_SPI_SR_FRE SPI_SR_FRE /*!< TI mode frame format error flag */
/**
* @}
*/
/** @defgroup SPI_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_SPI_ReadReg and LL_SPI_WriteReg functions
* @{
*/
#define LL_SPI_CR2_RXNEIE SPI_CR2_RXNEIE /*!< Rx buffer not empty interrupt enable */
#define LL_SPI_CR2_TXEIE SPI_CR2_TXEIE /*!< Tx buffer empty interrupt enable */
#define LL_SPI_CR2_ERRIE SPI_CR2_ERRIE /*!< Error interrupt enable */
/**
* @}
*/
/** @defgroup SPI_LL_EC_MODE Operation Mode
* @{
*/
#define LL_SPI_MODE_MASTER (SPI_CR1_MSTR | SPI_CR1_SSI) /*!< Master configuration */
#define LL_SPI_MODE_SLAVE ((uint32_t)0x00000000U) /*!< Slave configuration */
/**
* @}
*/
/** @defgroup SPI_LL_EC_PROTOCOL Serial Protocol
* @{
*/
#define LL_SPI_PROTOCOL_MOTOROLA ((uint32_t)0x00000000U) /*!< Motorola mode. Used as default value */
#define LL_SPI_PROTOCOL_TI (SPI_CR2_FRF) /*!< TI mode */
/**
* @}
*/
/** @defgroup SPI_LL_EC_PHASE Clock Phase
* @{
*/
#define LL_SPI_PHASE_1EDGE ((uint32_t)0x00000000U) /*!< First clock transition is the first data capture edge */
#define LL_SPI_PHASE_2EDGE (SPI_CR1_CPHA) /*!< Second clock transition is the first data capture edge */
/**
* @}
*/
/** @defgroup SPI_LL_EC_POLARITY Clock Polarity
* @{
*/
#define LL_SPI_POLARITY_LOW ((uint32_t)0x00000000U) /*!< Clock to 0 when idle */
#define LL_SPI_POLARITY_HIGH (SPI_CR1_CPOL) /*!< Clock to 1 when idle */
/**
* @}
*/
/** @defgroup SPI_LL_EC_BAUDRATEPRESCALER Baud Rate Prescaler
* @{
*/
#define LL_SPI_BAUDRATEPRESCALER_DIV2 ((uint32_t)0x00000000U) /*!< BaudRate control equal to fPCLK/2 */
#define LL_SPI_BAUDRATEPRESCALER_DIV4 (SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/4 */
#define LL_SPI_BAUDRATEPRESCALER_DIV8 (SPI_CR1_BR_1) /*!< BaudRate control equal to fPCLK/8 */
#define LL_SPI_BAUDRATEPRESCALER_DIV16 (SPI_CR1_BR_1 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/16 */
#define LL_SPI_BAUDRATEPRESCALER_DIV32 (SPI_CR1_BR_2) /*!< BaudRate control equal to fPCLK/32 */
#define LL_SPI_BAUDRATEPRESCALER_DIV64 (SPI_CR1_BR_2 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/64 */
#define LL_SPI_BAUDRATEPRESCALER_DIV128 (SPI_CR1_BR_2 | SPI_CR1_BR_1) /*!< BaudRate control equal to fPCLK/128 */
#define LL_SPI_BAUDRATEPRESCALER_DIV256 (SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0) /*!< BaudRate control equal to fPCLK/256 */
/**
* @}
*/
/** @defgroup SPI_LL_EC_BIT_ORDER Transmission Bit Order
* @{
*/
#define LL_SPI_LSB_FIRST (SPI_CR1_LSBFIRST) /*!< Data is transmitted/received with the LSB first */
#define LL_SPI_MSB_FIRST ((uint32_t)0x00000000U) /*!< Data is transmitted/received with the MSB first */
/**
* @}
*/
/** @defgroup SPI_LL_EC_TRANSFER_MODE Transfer Mode
* @{
*/
#define LL_SPI_FULL_DUPLEX ((uint32_t)0x00000000U) /*!< Full-Duplex mode. Rx and Tx transfer on 2 lines */
#define LL_SPI_SIMPLEX_RX (SPI_CR1_RXONLY) /*!< Simplex Rx mode. Rx transfer only on 1 line */
#define LL_SPI_HALF_DUPLEX_RX (SPI_CR1_BIDIMODE) /*!< Half-Duplex Rx mode. Rx transfer on 1 line */
#define LL_SPI_HALF_DUPLEX_TX (SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE) /*!< Half-Duplex Tx mode. Tx transfer on 1 line */
/**
* @}
*/
/** @defgroup SPI_LL_EC_NSS_MODE Slave Select Pin Mode
* @{
*/
#define LL_SPI_NSS_SOFT (SPI_CR1_SSM) /*!< NSS managed internally. NSS pin not used and free */
#define LL_SPI_NSS_HARD_INPUT ((uint32_t)0x00000000U) /*!< NSS pin used in Input. Only used in Master mode */
#define LL_SPI_NSS_HARD_OUTPUT (((uint32_t)SPI_CR2_SSOE << 16U)) /*!< NSS pin used in Output. Only used in Slave mode as chip select */
/**
* @}
*/
/** @defgroup SPI_LL_EC_DATAWIDTH Datawidth
* @{
*/
#define LL_SPI_DATAWIDTH_4BIT (SPI_CR2_DS_0 | SPI_CR2_DS_1) /*!< Data length for SPI transfer: 4 bits */
#define LL_SPI_DATAWIDTH_5BIT (SPI_CR2_DS_2) /*!< Data length for SPI transfer: 5 bits */
#define LL_SPI_DATAWIDTH_6BIT (SPI_CR2_DS_2 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 6 bits */
#define LL_SPI_DATAWIDTH_7BIT (SPI_CR2_DS_2 | SPI_CR2_DS_1) /*!< Data length for SPI transfer: 7 bits */
#define LL_SPI_DATAWIDTH_8BIT (SPI_CR2_DS_2 | SPI_CR2_DS_1 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 8 bits */
#define LL_SPI_DATAWIDTH_9BIT (SPI_CR2_DS_3) /*!< Data length for SPI transfer: 9 bits */
#define LL_SPI_DATAWIDTH_10BIT (SPI_CR2_DS_3 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 10 bits */
#define LL_SPI_DATAWIDTH_11BIT (SPI_CR2_DS_3 | SPI_CR2_DS_1) /*!< Data length for SPI transfer: 11 bits */
#define LL_SPI_DATAWIDTH_12BIT (SPI_CR2_DS_3 | SPI_CR2_DS_1 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 12 bits */
#define LL_SPI_DATAWIDTH_13BIT (SPI_CR2_DS_3 | SPI_CR2_DS_2) /*!< Data length for SPI transfer: 13 bits */
#define LL_SPI_DATAWIDTH_14BIT (SPI_CR2_DS_3 | SPI_CR2_DS_2 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 14 bits */
#define LL_SPI_DATAWIDTH_15BIT (SPI_CR2_DS_3 | SPI_CR2_DS_2 | SPI_CR2_DS_1) /*!< Data length for SPI transfer: 15 bits */
#define LL_SPI_DATAWIDTH_16BIT (SPI_CR2_DS_3 | SPI_CR2_DS_2 | SPI_CR2_DS_1 | SPI_CR2_DS_0) /*!< Data length for SPI transfer: 16 bits */
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup SPI_LL_EC_CRC_CALCULATION CRC Calculation
* @{
*/
#define LL_SPI_CRCCALCULATION_DISABLE ((uint32_t)0x00000000U) /*!< CRC calculation disabled */
#define LL_SPI_CRCCALCULATION_ENABLE (SPI_CR1_CRCEN) /*!< CRC calculation enabled */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/** @defgroup SPI_LL_EC_CRC_LENGTH CRC Length
* @{
*/
#define LL_SPI_CRC_8BIT ((uint32_t)0x00000000U) /*!< 8-bit CRC length */
#define LL_SPI_CRC_16BIT (SPI_CR1_CRCL) /*!< 16-bit CRC length */
/**
* @}
*/
/** @defgroup SPI_LL_EC_RX_FIFO_TH RX FIFO Threshold
* @{
*/
#define LL_SPI_RX_FIFO_TH_HALF ((uint32_t)0x00000000U) /*!< RXNE event is generated if FIFO level is greater than or equel to 1/2 (16-bit) */
#define LL_SPI_RX_FIFO_TH_QUARTER (SPI_CR2_FRXTH) /*!< RXNE event is generated if FIFO level is greater than or equel to 1/4 (8-bit) */
/**
* @}
*/
/** @defgroup SPI_LL_EC_RX_FIFO RX FIFO Level
* @{
*/
#define LL_SPI_RX_FIFO_EMPTY ((uint32_t)0x00000000U) /*!< FIFO reception empty */
#define LL_SPI_RX_FIFO_QUARTER_FULL (SPI_SR_FRLVL_0) /*!< FIFO reception 1/4 */
#define LL_SPI_RX_FIFO_HALF_FULL (SPI_SR_FRLVL_1) /*!< FIFO reception 1/2 */
#define LL_SPI_RX_FIFO_FULL (SPI_SR_FRLVL_1 | SPI_SR_FRLVL_0) /*!< FIFO reception full */
/**
* @}
*/
/** @defgroup SPI_LL_EC_TX_FIFO TX FIFO Level
* @{
*/
#define LL_SPI_TX_FIFO_EMPTY ((uint32_t)0x00000000U) /*!< FIFO transmission empty */
#define LL_SPI_TX_FIFO_QUARTER_FULL (SPI_SR_FTLVL_0) /*!< FIFO transmission 1/4 */
#define LL_SPI_TX_FIFO_HALF_FULL (SPI_SR_FTLVL_1) /*!< FIFO transmission 1/2 */
#define LL_SPI_TX_FIFO_FULL (SPI_SR_FTLVL_1 | SPI_SR_FTLVL_0) /*!< FIFO transmission full */
/**
* @}
*/
/** @defgroup SPI_LL_EC_DMA_PARITY DMA Parity
* @{
*/
#define LL_SPI_DMA_PARITY_EVEN ((uint32_t)0x00000000U) /*!< Select DMA parity Even */
#define LL_SPI_DMA_PARITY_ODD ((uint32_t)0x00000001U) /*!< Select DMA parity Odd */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup SPI_LL_Exported_Macros SPI Exported Macros
* @{
*/
/** @defgroup SPI_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in SPI register
* @param __INSTANCE__ SPI Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_SPI_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in SPI register
* @param __INSTANCE__ SPI Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_SPI_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup SPI_LL_Exported_Functions SPI Exported Functions
* @{
*/
/** @defgroup SPI_LL_EF_Configuration Configuration
* @{
*/
/**
* @brief Enable SPI peripheral
* @rmtoll CR1 SPE LL_SPI_Enable
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_Enable(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR1, SPI_CR1_SPE);
}
/**
* @brief Disable SPI peripheral
* @note When disabling the SPI, follow the procedure described in the Reference Manual.
* @rmtoll CR1 SPE LL_SPI_Disable
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_Disable(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
}
/**
* @brief Check if SPI peripheral is enabled
* @rmtoll CR1 SPE LL_SPI_IsEnabled
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabled(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->CR1, SPI_CR1_SPE) == (SPI_CR1_SPE));
}
/**
* @brief Set SPI operation mode to Master or Slave
* @note This bit should not be changed when communication is ongoing.
* @rmtoll CR1 MSTR LL_SPI_SetMode\n
* CR1 SSI LL_SPI_SetMode
* @param SPIx SPI Instance
* @param Mode This parameter can be one of the following values:
* @arg @ref LL_SPI_MODE_MASTER
* @arg @ref LL_SPI_MODE_SLAVE
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetMode(SPI_TypeDef *SPIx, uint32_t Mode)
{
MODIFY_REG(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI, Mode);
}
/**
* @brief Get SPI operation mode (Master or Slave)
* @rmtoll CR1 MSTR LL_SPI_GetMode\n
* CR1 SSI LL_SPI_GetMode
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_MODE_MASTER
* @arg @ref LL_SPI_MODE_SLAVE
*/
__STATIC_INLINE uint32_t LL_SPI_GetMode(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_MSTR | SPI_CR1_SSI));
}
/**
* @brief Set serial protocol used
* @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
* @rmtoll CR2 FRF LL_SPI_SetStandard
* @param SPIx SPI Instance
* @param Standard This parameter can be one of the following values:
* @arg @ref LL_SPI_PROTOCOL_MOTOROLA
* @arg @ref LL_SPI_PROTOCOL_TI
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard)
{
MODIFY_REG(SPIx->CR2, SPI_CR2_FRF, Standard);
}
/**
* @brief Get serial protocol used
* @rmtoll CR2 FRF LL_SPI_GetStandard
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_PROTOCOL_MOTOROLA
* @arg @ref LL_SPI_PROTOCOL_TI
*/
__STATIC_INLINE uint32_t LL_SPI_GetStandard(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_FRF));
}
/**
* @brief Set clock phase
* @note This bit should not be changed when communication is ongoing.
* This bit is not used in SPI TI mode.
* @rmtoll CR1 CPHA LL_SPI_SetClockPhase
* @param SPIx SPI Instance
* @param ClockPhase This parameter can be one of the following values:
* @arg @ref LL_SPI_PHASE_1EDGE
* @arg @ref LL_SPI_PHASE_2EDGE
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetClockPhase(SPI_TypeDef *SPIx, uint32_t ClockPhase)
{
MODIFY_REG(SPIx->CR1, SPI_CR1_CPHA, ClockPhase);
}
/**
* @brief Get clock phase
* @rmtoll CR1 CPHA LL_SPI_GetClockPhase
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_PHASE_1EDGE
* @arg @ref LL_SPI_PHASE_2EDGE
*/
__STATIC_INLINE uint32_t LL_SPI_GetClockPhase(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPHA));
}
/**
* @brief Set clock polarity
* @note This bit should not be changed when communication is ongoing.
* This bit is not used in SPI TI mode.
* @rmtoll CR1 CPOL LL_SPI_SetClockPolarity
* @param SPIx SPI Instance
* @param ClockPolarity This parameter can be one of the following values:
* @arg @ref LL_SPI_POLARITY_LOW
* @arg @ref LL_SPI_POLARITY_HIGH
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
{
MODIFY_REG(SPIx->CR1, SPI_CR1_CPOL, ClockPolarity);
}
/**
* @brief Get clock polarity
* @rmtoll CR1 CPOL LL_SPI_GetClockPolarity
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_POLARITY_LOW
* @arg @ref LL_SPI_POLARITY_HIGH
*/
__STATIC_INLINE uint32_t LL_SPI_GetClockPolarity(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CPOL));
}
/**
* @brief Set baud rate prescaler
* @note These bits should not be changed when communication is ongoing. SPI BaudRate = fPCLK/Prescaler.
* @rmtoll CR1 BR LL_SPI_SetBaudRatePrescaler
* @param SPIx SPI Instance
* @param BaudRate This parameter can be one of the following values:
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetBaudRatePrescaler(SPI_TypeDef *SPIx, uint32_t BaudRate)
{
MODIFY_REG(SPIx->CR1, SPI_CR1_BR, BaudRate);
}
/**
* @brief Get baud rate prescaler
* @rmtoll CR1 BR LL_SPI_GetBaudRatePrescaler
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV2
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV4
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV8
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV16
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV32
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV64
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV128
* @arg @ref LL_SPI_BAUDRATEPRESCALER_DIV256
*/
__STATIC_INLINE uint32_t LL_SPI_GetBaudRatePrescaler(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_BR));
}
/**
* @brief Set transfer bit order
* @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
* @rmtoll CR1 LSBFIRST LL_SPI_SetTransferBitOrder
* @param SPIx SPI Instance
* @param BitOrder This parameter can be one of the following values:
* @arg @ref LL_SPI_LSB_FIRST
* @arg @ref LL_SPI_MSB_FIRST
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetTransferBitOrder(SPI_TypeDef *SPIx, uint32_t BitOrder)
{
MODIFY_REG(SPIx->CR1, SPI_CR1_LSBFIRST, BitOrder);
}
/**
* @brief Get transfer bit order
* @rmtoll CR1 LSBFIRST LL_SPI_GetTransferBitOrder
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_LSB_FIRST
* @arg @ref LL_SPI_MSB_FIRST
*/
__STATIC_INLINE uint32_t LL_SPI_GetTransferBitOrder(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_LSBFIRST));
}
/**
* @brief Set transfer direction mode
* @note For Half-Duplex mode, Rx Direction is set by default.
* In master mode, the MOSI pin is used and in slave mode, the MISO pin is used for Half-Duplex.
* @rmtoll CR1 RXONLY LL_SPI_SetTransferDirection\n
* CR1 BIDIMODE LL_SPI_SetTransferDirection\n
* CR1 BIDIOE LL_SPI_SetTransferDirection
* @param SPIx SPI Instance
* @param TransferDirection This parameter can be one of the following values:
* @arg @ref LL_SPI_FULL_DUPLEX
* @arg @ref LL_SPI_SIMPLEX_RX
* @arg @ref LL_SPI_HALF_DUPLEX_RX
* @arg @ref LL_SPI_HALF_DUPLEX_TX
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetTransferDirection(SPI_TypeDef *SPIx, uint32_t TransferDirection)
{
MODIFY_REG(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE, TransferDirection);
}
/**
* @brief Get transfer direction mode
* @rmtoll CR1 RXONLY LL_SPI_GetTransferDirection\n
* CR1 BIDIMODE LL_SPI_GetTransferDirection\n
* CR1 BIDIOE LL_SPI_GetTransferDirection
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_FULL_DUPLEX
* @arg @ref LL_SPI_SIMPLEX_RX
* @arg @ref LL_SPI_HALF_DUPLEX_RX
* @arg @ref LL_SPI_HALF_DUPLEX_TX
*/
__STATIC_INLINE uint32_t LL_SPI_GetTransferDirection(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_RXONLY | SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE));
}
/**
* @brief Set frame data width
* @rmtoll CR2 DS LL_SPI_SetDataWidth
* @param SPIx SPI Instance
* @param DataWidth This parameter can be one of the following values:
* @arg @ref LL_SPI_DATAWIDTH_4BIT
* @arg @ref LL_SPI_DATAWIDTH_5BIT
* @arg @ref LL_SPI_DATAWIDTH_6BIT
* @arg @ref LL_SPI_DATAWIDTH_7BIT
* @arg @ref LL_SPI_DATAWIDTH_8BIT
* @arg @ref LL_SPI_DATAWIDTH_9BIT
* @arg @ref LL_SPI_DATAWIDTH_10BIT
* @arg @ref LL_SPI_DATAWIDTH_11BIT
* @arg @ref LL_SPI_DATAWIDTH_12BIT
* @arg @ref LL_SPI_DATAWIDTH_13BIT
* @arg @ref LL_SPI_DATAWIDTH_14BIT
* @arg @ref LL_SPI_DATAWIDTH_15BIT
* @arg @ref LL_SPI_DATAWIDTH_16BIT
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetDataWidth(SPI_TypeDef *SPIx, uint32_t DataWidth)
{
MODIFY_REG(SPIx->CR2, SPI_CR2_DS, DataWidth);
}
/**
* @brief Get frame data width
* @rmtoll CR2 DS LL_SPI_GetDataWidth
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_DATAWIDTH_4BIT
* @arg @ref LL_SPI_DATAWIDTH_5BIT
* @arg @ref LL_SPI_DATAWIDTH_6BIT
* @arg @ref LL_SPI_DATAWIDTH_7BIT
* @arg @ref LL_SPI_DATAWIDTH_8BIT
* @arg @ref LL_SPI_DATAWIDTH_9BIT
* @arg @ref LL_SPI_DATAWIDTH_10BIT
* @arg @ref LL_SPI_DATAWIDTH_11BIT
* @arg @ref LL_SPI_DATAWIDTH_12BIT
* @arg @ref LL_SPI_DATAWIDTH_13BIT
* @arg @ref LL_SPI_DATAWIDTH_14BIT
* @arg @ref LL_SPI_DATAWIDTH_15BIT
* @arg @ref LL_SPI_DATAWIDTH_16BIT
*/
__STATIC_INLINE uint32_t LL_SPI_GetDataWidth(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_DS));
}
/**
* @brief Set threshold of RXFIFO that triggers an RXNE event
* @rmtoll CR2 FRXTH LL_SPI_SetRxFIFOThreshold
* @param SPIx SPI Instance
* @param Threshold This parameter can be one of the following values:
* @arg @ref LL_SPI_RX_FIFO_TH_HALF
* @arg @ref LL_SPI_RX_FIFO_TH_QUARTER
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetRxFIFOThreshold(SPI_TypeDef *SPIx, uint32_t Threshold)
{
MODIFY_REG(SPIx->CR2, SPI_CR2_FRXTH, Threshold);
}
/**
* @brief Get threshold of RXFIFO that triggers an RXNE event
* @rmtoll CR2 FRXTH LL_SPI_GetRxFIFOThreshold
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_RX_FIFO_TH_HALF
* @arg @ref LL_SPI_RX_FIFO_TH_QUARTER
*/
__STATIC_INLINE uint32_t LL_SPI_GetRxFIFOThreshold(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_FRXTH));
}
/**
* @}
*/
/** @defgroup SPI_LL_EF_CRC_Management CRC Management
* @{
*/
/**
* @brief Enable CRC
* @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
* @rmtoll CR1 CRCEN LL_SPI_EnableCRC
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableCRC(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR1, SPI_CR1_CRCEN);
}
/**
* @brief Disable CRC
* @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
* @rmtoll CR1 CRCEN LL_SPI_DisableCRC
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableCRC(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CR1, SPI_CR1_CRCEN);
}
/**
* @brief Check if CRC is enabled
* @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
* @rmtoll CR1 CRCEN LL_SPI_IsEnabledCRC
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledCRC(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->CR1, SPI_CR1_CRCEN) == (SPI_CR1_CRCEN));
}
/**
* @brief Set CRC Length
* @note This bit should be written only when SPI is disabled (SPE = 0) for correct operation.
* @rmtoll CR1 CRCL LL_SPI_SetCRCWidth
* @param SPIx SPI Instance
* @param CRCLength This parameter can be one of the following values:
* @arg @ref LL_SPI_CRC_8BIT
* @arg @ref LL_SPI_CRC_16BIT
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetCRCWidth(SPI_TypeDef *SPIx, uint32_t CRCLength)
{
MODIFY_REG(SPIx->CR1, SPI_CR1_CRCL, CRCLength);
}
/**
* @brief Get CRC Length
* @rmtoll CR1 CRCL LL_SPI_GetCRCWidth
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_CRC_8BIT
* @arg @ref LL_SPI_CRC_16BIT
*/
__STATIC_INLINE uint32_t LL_SPI_GetCRCWidth(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR1, SPI_CR1_CRCL));
}
/**
* @brief Set CRCNext to transfer CRC on the line
* @note This bit has to be written as soon as the last data is written in the SPIx_DR register.
* @rmtoll CR1 CRCNEXT LL_SPI_SetCRCNext
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetCRCNext(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR1, SPI_CR1_CRCNEXT);
}
/**
* @brief Set polynomial for CRC calculation
* @rmtoll CRCPR CRCPOLY LL_SPI_SetCRCPolynomial
* @param SPIx SPI Instance
* @param CRCPoly This parameter must be a number between Min_Data = 0x00 and Max_Data = 0xFFFF
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetCRCPolynomial(SPI_TypeDef *SPIx, uint32_t CRCPoly)
{
WRITE_REG(SPIx->CRCPR, (uint16_t)CRCPoly);
}
/**
* @brief Get polynomial for CRC calculation
* @rmtoll CRCPR CRCPOLY LL_SPI_GetCRCPolynomial
* @param SPIx SPI Instance
* @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
*/
__STATIC_INLINE uint32_t LL_SPI_GetCRCPolynomial(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_REG(SPIx->CRCPR));
}
/**
* @brief Get Rx CRC
* @rmtoll RXCRCR RXCRC LL_SPI_GetRxCRC
* @param SPIx SPI Instance
* @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
*/
__STATIC_INLINE uint32_t LL_SPI_GetRxCRC(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_REG(SPIx->RXCRCR));
}
/**
* @brief Get Tx CRC
* @rmtoll TXCRCR TXCRC LL_SPI_GetTxCRC
* @param SPIx SPI Instance
* @retval Returned value is a number between Min_Data = 0x00 and Max_Data = 0xFFFF
*/
__STATIC_INLINE uint32_t LL_SPI_GetTxCRC(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_REG(SPIx->TXCRCR));
}
/**
* @}
*/
/** @defgroup SPI_LL_EF_NSS_Management Slave Select Pin Management
* @{
*/
/**
* @brief Set NSS mode
* @note LL_SPI_NSS_SOFT Mode is not used in SPI TI mode.
* @rmtoll CR1 SSM LL_SPI_SetNSSMode\n
* @rmtoll CR2 SSOE LL_SPI_SetNSSMode
* @param SPIx SPI Instance
* @param NSS This parameter can be one of the following values:
* @arg @ref LL_SPI_NSS_SOFT
* @arg @ref LL_SPI_NSS_HARD_INPUT
* @arg @ref LL_SPI_NSS_HARD_OUTPUT
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetNSSMode(SPI_TypeDef *SPIx, uint32_t NSS)
{
MODIFY_REG(SPIx->CR1, SPI_CR1_SSM, NSS);
MODIFY_REG(SPIx->CR2, SPI_CR2_SSOE, ((uint32_t)(NSS >> 16U)));
}
/**
* @brief Get NSS mode
* @rmtoll CR1 SSM LL_SPI_GetNSSMode\n
* @rmtoll CR2 SSOE LL_SPI_GetNSSMode
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_NSS_SOFT
* @arg @ref LL_SPI_NSS_HARD_INPUT
* @arg @ref LL_SPI_NSS_HARD_OUTPUT
*/
__STATIC_INLINE uint32_t LL_SPI_GetNSSMode(SPI_TypeDef *SPIx)
{
register uint32_t Ssm = (READ_BIT(SPIx->CR1, SPI_CR1_SSM));
register uint32_t Ssoe = (READ_BIT(SPIx->CR2, SPI_CR2_SSOE) << 16U);
return (Ssm | Ssoe);
}
/**
* @brief Enable NSS pulse management
* @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
* @rmtoll CR2 NSSP LL_SPI_EnableNSSPulseMgt
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableNSSPulseMgt(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR2, SPI_CR2_NSSP);
}
/**
* @brief Disable NSS pulse management
* @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
* @rmtoll CR2 NSSP LL_SPI_DisableNSSPulseMgt
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableNSSPulseMgt(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CR2, SPI_CR2_NSSP);
}
/**
* @brief Check if NSS pulse is enabled
* @note This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode.
* @rmtoll CR2 NSSP LL_SPI_IsEnabledNSSPulse
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledNSSPulse(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->CR2, SPI_CR2_NSSP) == (SPI_CR2_NSSP));
}
/**
* @}
*/
/** @defgroup SPI_LL_EF_FLAG_Management FLAG Management
* @{
*/
/**
* @brief Check if Rx buffer is not empty
* @rmtoll SR RXNE LL_SPI_IsActiveFlag_RXNE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_RXNE(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->SR, SPI_SR_RXNE) == (SPI_SR_RXNE));
}
/**
* @brief Check if Tx buffer is empty
* @rmtoll SR TXE LL_SPI_IsActiveFlag_TXE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_TXE(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->SR, SPI_SR_TXE) == (SPI_SR_TXE));
}
/**
* @brief Get CRC error flag
* @rmtoll SR CRCERR LL_SPI_IsActiveFlag_CRCERR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_CRCERR(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->SR, SPI_SR_CRCERR) == (SPI_SR_CRCERR));
}
/**
* @brief Get mode fault error flag
* @rmtoll SR MODF LL_SPI_IsActiveFlag_MODF
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_MODF(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->SR, SPI_SR_MODF) == (SPI_SR_MODF));
}
/**
* @brief Get overrun error flag
* @rmtoll SR OVR LL_SPI_IsActiveFlag_OVR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->SR, SPI_SR_OVR) == (SPI_SR_OVR));
}
/**
* @brief Get busy flag
* @note The BSY flag is cleared under any one of the following conditions:
* -When the SPI is correctly disabled
* -When a fault is detected in Master mode (MODF bit set to 1)
* -In Master mode, when it finishes a data transmission and no new data is ready to be
* sent
* -In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between
* each data transfer.
* @rmtoll SR BSY LL_SPI_IsActiveFlag_BSY
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_BSY(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->SR, SPI_SR_BSY) == (SPI_SR_BSY));
}
/**
* @brief Get frame format error flag
* @rmtoll SR FRE LL_SPI_IsActiveFlag_FRE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsActiveFlag_FRE(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->SR, SPI_SR_FRE) == (SPI_SR_FRE));
}
/**
* @brief Get FIFO reception Level
* @rmtoll SR FRLVL LL_SPI_GetRxFIFOLevel
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_RX_FIFO_EMPTY
* @arg @ref LL_SPI_RX_FIFO_QUARTER_FULL
* @arg @ref LL_SPI_RX_FIFO_HALF_FULL
* @arg @ref LL_SPI_RX_FIFO_FULL
*/
__STATIC_INLINE uint32_t LL_SPI_GetRxFIFOLevel(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->SR, SPI_SR_FRLVL));
}
/**
* @brief Get FIFO Transmission Level
* @rmtoll SR FTLVL LL_SPI_GetTxFIFOLevel
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_TX_FIFO_EMPTY
* @arg @ref LL_SPI_TX_FIFO_QUARTER_FULL
* @arg @ref LL_SPI_TX_FIFO_HALF_FULL
* @arg @ref LL_SPI_TX_FIFO_FULL
*/
__STATIC_INLINE uint32_t LL_SPI_GetTxFIFOLevel(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->SR, SPI_SR_FTLVL));
}
/**
* @brief Clear CRC error flag
* @rmtoll SR CRCERR LL_SPI_ClearFlag_CRCERR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_ClearFlag_CRCERR(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->SR, SPI_SR_CRCERR);
}
/**
* @brief Clear mode fault error flag
* @note Clearing this flag is done by a read access to the SPIx_SR
* register followed by a write access to the SPIx_CR1 register
* @rmtoll SR MODF LL_SPI_ClearFlag_MODF
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_ClearFlag_MODF(SPI_TypeDef *SPIx)
{
__IO uint32_t tmpreg;
tmpreg = SPIx->SR;
(void) tmpreg;
tmpreg = CLEAR_BIT(SPIx->CR1, SPI_CR1_SPE);
(void) tmpreg;
}
/**
* @brief Clear overrun error flag
* @note Clearing this flag is done by a read access to the SPIx_DR
* register followed by a read access to the SPIx_SR register
* @rmtoll SR OVR LL_SPI_ClearFlag_OVR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_ClearFlag_OVR(SPI_TypeDef *SPIx)
{
__IO uint32_t tmpreg;
tmpreg = SPIx->DR;
(void) tmpreg;
tmpreg = SPIx->SR;
(void) tmpreg;
}
/**
* @brief Clear frame format error flag
* @note Clearing this flag is done by reading SPIx_SR register
* @rmtoll SR FRE LL_SPI_ClearFlag_FRE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_ClearFlag_FRE(SPI_TypeDef *SPIx)
{
__IO uint32_t tmpreg;
tmpreg = SPIx->SR;
(void) tmpreg;
}
/**
* @}
*/
/** @defgroup SPI_LL_EF_IT_Management Interrupt Management
* @{
*/
/**
* @brief Enable error interrupt
* @note This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode).
* @rmtoll CR2 ERRIE LL_SPI_EnableIT_ERR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIT_ERR(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR2, SPI_CR2_ERRIE);
}
/**
* @brief Enable Rx buffer not empty interrupt
* @rmtoll CR2 RXNEIE LL_SPI_EnableIT_RXNE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIT_RXNE(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR2, SPI_CR2_RXNEIE);
}
/**
* @brief Enable Tx buffer empty interrupt
* @rmtoll CR2 TXEIE LL_SPI_EnableIT_TXE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableIT_TXE(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR2, SPI_CR2_TXEIE);
}
/**
* @brief Disable error interrupt
* @note This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode).
* @rmtoll CR2 ERRIE LL_SPI_DisableIT_ERR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIT_ERR(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CR2, SPI_CR2_ERRIE);
}
/**
* @brief Disable Rx buffer not empty interrupt
* @rmtoll CR2 RXNEIE LL_SPI_DisableIT_RXNE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIT_RXNE(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CR2, SPI_CR2_RXNEIE);
}
/**
* @brief Disable Tx buffer empty interrupt
* @rmtoll CR2 TXEIE LL_SPI_DisableIT_TXE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableIT_TXE(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CR2, SPI_CR2_TXEIE);
}
/**
* @brief Check if error interrupt is enabled
* @rmtoll CR2 ERRIE LL_SPI_IsEnabledIT_ERR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_ERR(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->CR2, SPI_CR2_ERRIE) == (SPI_CR2_ERRIE));
}
/**
* @brief Check if Rx buffer not empty interrupt is enabled
* @rmtoll CR2 RXNEIE LL_SPI_IsEnabledIT_RXNE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_RXNE(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->CR2, SPI_CR2_RXNEIE) == (SPI_CR2_RXNEIE));
}
/**
* @brief Check if Tx buffer empty interrupt
* @rmtoll CR2 TXEIE LL_SPI_IsEnabledIT_TXE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledIT_TXE(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->CR2, SPI_CR2_TXEIE) == (SPI_CR2_TXEIE));
}
/**
* @}
*/
/** @defgroup SPI_LL_EF_DMA_Management DMA Management
* @{
*/
/**
* @brief Enable DMA Rx
* @rmtoll CR2 RXDMAEN LL_SPI_EnableDMAReq_RX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableDMAReq_RX(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR2, SPI_CR2_RXDMAEN);
}
/**
* @brief Disable DMA Rx
* @rmtoll CR2 RXDMAEN LL_SPI_DisableDMAReq_RX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableDMAReq_RX(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CR2, SPI_CR2_RXDMAEN);
}
/**
* @brief Check if DMA Rx is enabled
* @rmtoll CR2 RXDMAEN LL_SPI_IsEnabledDMAReq_RX
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->CR2, SPI_CR2_RXDMAEN) == (SPI_CR2_RXDMAEN));
}
/**
* @brief Enable DMA Tx
* @rmtoll CR2 TXDMAEN LL_SPI_EnableDMAReq_TX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_EnableDMAReq_TX(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->CR2, SPI_CR2_TXDMAEN);
}
/**
* @brief Disable DMA Tx
* @rmtoll CR2 TXDMAEN LL_SPI_DisableDMAReq_TX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_SPI_DisableDMAReq_TX(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->CR2, SPI_CR2_TXDMAEN);
}
/**
* @brief Check if DMA Tx is enabled
* @rmtoll CR2 TXDMAEN LL_SPI_IsEnabledDMAReq_TX
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SPI_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->CR2, SPI_CR2_TXDMAEN) == (SPI_CR2_TXDMAEN));
}
/**
* @brief Set parity of Last DMA reception
* @rmtoll CR2 LDMARX LL_SPI_SetDMAParity_RX
* @param SPIx SPI Instance
* @param Parity This parameter can be one of the following values:
* @arg @ref LL_SPI_DMA_PARITY_ODD
* @arg @ref LL_SPI_DMA_PARITY_EVEN
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetDMAParity_RX(SPI_TypeDef *SPIx, uint32_t Parity)
{
MODIFY_REG(SPIx->CR2, SPI_CR2_LDMARX, (Parity << POSITION_VAL(SPI_CR2_LDMARX)));
}
/**
* @brief Get parity configuration for Last DMA reception
* @rmtoll CR2 LDMARX LL_SPI_GetDMAParity_RX
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_DMA_PARITY_ODD
* @arg @ref LL_SPI_DMA_PARITY_EVEN
*/
__STATIC_INLINE uint32_t LL_SPI_GetDMAParity_RX(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_LDMARX) >> POSITION_VAL(SPI_CR2_LDMARX));
}
/**
* @brief Set parity of Last DMA transmission
* @rmtoll CR2 LDMATX LL_SPI_SetDMAParity_TX
* @param SPIx SPI Instance
* @param Parity This parameter can be one of the following values:
* @arg @ref LL_SPI_DMA_PARITY_ODD
* @arg @ref LL_SPI_DMA_PARITY_EVEN
* @retval None
*/
__STATIC_INLINE void LL_SPI_SetDMAParity_TX(SPI_TypeDef *SPIx, uint32_t Parity)
{
MODIFY_REG(SPIx->CR2, SPI_CR2_LDMATX, (Parity << POSITION_VAL(SPI_CR2_LDMATX)));
}
/**
* @brief Get parity configuration for Last DMA transmission
* @rmtoll CR2 LDMATX LL_SPI_GetDMAParity_TX
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_SPI_DMA_PARITY_ODD
* @arg @ref LL_SPI_DMA_PARITY_EVEN
*/
__STATIC_INLINE uint32_t LL_SPI_GetDMAParity_TX(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->CR2, SPI_CR2_LDMATX) >> POSITION_VAL(SPI_CR2_LDMATX));
}
/**
* @brief Get the data register address used for DMA transfer
* @rmtoll DR DR LL_SPI_DMA_GetRegAddr
* @param SPIx SPI Instance
* @retval Address of data register
*/
__STATIC_INLINE uint32_t LL_SPI_DMA_GetRegAddr(SPI_TypeDef *SPIx)
{
return (uint32_t) & (SPIx->DR);
}
/**
* @}
*/
/** @defgroup SPI_LL_EF_DATA_Management DATA Management
* @{
*/
/**
* @brief Read 8-Bits in the data register
* @rmtoll DR DR LL_SPI_ReceiveData8
* @param SPIx SPI Instance
* @retval RxData Value between Min_Data=0x00 and Max_Data=0xFF
*/
__STATIC_INLINE uint8_t LL_SPI_ReceiveData8(SPI_TypeDef *SPIx)
{
return (uint8_t)(READ_REG(SPIx->DR));
}
/**
* @brief Read 16-Bits in the data register
* @rmtoll DR DR LL_SPI_ReceiveData16
* @param SPIx SPI Instance
* @retval RxData Value between Min_Data=0x00 and Max_Data=0xFFFF
*/
__STATIC_INLINE uint16_t LL_SPI_ReceiveData16(SPI_TypeDef *SPIx)
{
return (uint16_t)(READ_REG(SPIx->DR));
}
/**
* @brief Write 8-Bits in the data register
* @rmtoll DR DR LL_SPI_TransmitData8
* @param SPIx SPI Instance
* @param TxData Value between Min_Data=0x00 and Max_Data=0xFF
* @retval None
*/
__STATIC_INLINE void LL_SPI_TransmitData8(SPI_TypeDef *SPIx, uint8_t TxData)
{
*((__IO uint8_t *)&SPIx->DR) = TxData;
}
/**
* @brief Write 16-Bits in the data register
* @rmtoll DR DR LL_SPI_TransmitData16
* @param SPIx SPI Instance
* @param TxData Value between Min_Data=0x00 and Max_Data=0xFFFF
* @retval None
*/
__STATIC_INLINE void LL_SPI_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
{
*((__IO uint16_t *)&SPIx->DR) = TxData;
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup SPI_LL_EF_Init Initialization and de-initialization functions
* @{
*/
ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx);
ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct);
void LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#if defined(SPI_I2S_SUPPORT)
/** @defgroup I2S_LL I2S
* @{
*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup I2S_LL_ES_INIT I2S Exported Init structure
* @{
*/
/**
* @brief I2S Init structure definition
*/
typedef struct
{
uint32_t Mode; /*!< Specifies the I2S operating mode.
This parameter can be a value of @ref I2S_LL_EC_MODE
This feature can be modified afterwards using unitary function @ref LL_I2S_SetTransferMode().*/
uint32_t Standard; /*!< Specifies the standard used for the I2S communication.
This parameter can be a value of @ref I2S_LL_EC_STANDARD
This feature can be modified afterwards using unitary function @ref LL_I2S_SetStandard().*/
uint32_t DataFormat; /*!< Specifies the data format for the I2S communication.
This parameter can be a value of @ref I2S_LL_EC_DATA_FORMAT
This feature can be modified afterwards using unitary function @ref LL_I2S_SetDataFormat().*/
uint32_t MCLKOutput; /*!< Specifies whether the I2S MCLK output is enabled or not.
This parameter can be a value of @ref I2S_LL_EC_MCLK_OUTPUT
This feature can be modified afterwards using unitary functions @ref LL_I2S_EnableMasterClock() or @ref LL_I2S_DisableMasterClock.*/
uint32_t AudioFreq; /*!< Specifies the frequency selected for the I2S communication.
This parameter can be a value of @ref I2S_LL_EC_AUDIO_FREQ
Audio Frequency can be modified afterwards using Reference manual formulas to calculate Prescaler Linear, Parity
and unitary functions @ref LL_I2S_SetPrescalerLinear() and @ref LL_I2S_SetPrescalerParity() to set it.*/
uint32_t ClockPolarity; /*!< Specifies the idle state of the I2S clock.
This parameter can be a value of @ref I2S_LL_EC_POLARITY
This feature can be modified afterwards using unitary function @ref LL_I2S_SetClockPolarity().*/
} LL_I2S_InitTypeDef;
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup I2S_LL_Exported_Constants I2S Exported Constants
* @{
*/
/** @defgroup I2S_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_I2S_ReadReg function
* @{
*/
#define LL_I2S_SR_RXNE LL_SPI_SR_RXNE /*!< Rx buffer not empty flag */
#define LL_I2S_SR_TXE LL_SPI_SR_TXE /*!< Tx buffer empty flag */
#define LL_I2S_SR_BSY LL_SPI_SR_BSY /*!< Busy flag */
#define LL_I2S_SR_UDR LL_SPI_SR_UDR /*!< Underrun flag */
#define LL_I2S_SR_OVR LL_SPI_SR_OVR /*!< Overrun flag */
#define LL_I2S_SR_FRE LL_SPI_SR_FRE /*!< TI mode frame format error flag */
/**
* @}
*/
/** @defgroup SPI_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_SPI_ReadReg and LL_SPI_WriteReg functions
* @{
*/
#define LL_I2S_CR2_RXNEIE LL_SPI_CR2_RXNEIE /*!< Rx buffer not empty interrupt enable */
#define LL_I2S_CR2_TXEIE LL_SPI_CR2_TXEIE /*!< Tx buffer empty interrupt enable */
#define LL_I2S_CR2_ERRIE LL_SPI_CR2_ERRIE /*!< Error interrupt enable */
/**
* @}
*/
/** @defgroup I2S_LL_EC_DATA_FORMAT Data format
* @{
*/
#define LL_I2S_DATAFORMAT_16B ((uint32_t)0x00000000U) /*!< Data length 16 bits, Channel lenght 16bit */
#define LL_I2S_DATAFORMAT_16B_EXTENDED (SPI_I2SCFGR_CHLEN) /*!< Data length 16 bits, Channel lenght 32bit */
#define LL_I2S_DATAFORMAT_24B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_0) /*!< Data length 24 bits, Channel lenght 32bit */
#define LL_I2S_DATAFORMAT_32B (SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN_1) /*!< Data length 16 bits, Channel lenght 32bit */
/**
* @}
*/
/** @defgroup I2S_LL_EC_POLARITY Clock Polarity
* @{
*/
#define LL_I2S_POLARITY_LOW ((uint32_t)0x00000000U) /*!< Clock steady state is low level */
#define LL_I2S_POLARITY_HIGH (SPI_I2SCFGR_CKPOL) /*!< Clock steady state is high level */
/**
* @}
*/
/** @defgroup I2S_LL_EC_STANDARD I2s Standard
* @{
*/
#define LL_I2S_STANDARD_PHILIPS ((uint32_t)0x00000000U) /*!< I2S standard philips */
#define LL_I2S_STANDARD_MSB (SPI_I2SCFGR_I2SSTD_0) /*!< MSB justified standard (left justified) */
#define LL_I2S_STANDARD_LSB (SPI_I2SCFGR_I2SSTD_1) /*!< LSB justified standard (right justified) */
#define LL_I2S_STANDARD_PCM_SHORT (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1) /*!< PCM standard, short frame synchronization */
#define LL_I2S_STANDARD_PCM_LONG (SPI_I2SCFGR_I2SSTD_0 | SPI_I2SCFGR_I2SSTD_1 | SPI_I2SCFGR_PCMSYNC) /*!< PCM standard, long frame synchronization */
/**
* @}
*/
/** @defgroup I2S_LL_EC_MODE Operation Mode
* @{
*/
#define LL_I2S_MODE_SLAVE_TX ((uint32_t)0x00000000U) /*!< Slave Tx configuration */
#define LL_I2S_MODE_SLAVE_RX (SPI_I2SCFGR_I2SCFG_0) /*!< Slave Rx configuration */
#define LL_I2S_MODE_MASTER_TX (SPI_I2SCFGR_I2SCFG_1) /*!< Master Tx configuration */
#define LL_I2S_MODE_MASTER_RX (SPI_I2SCFGR_I2SCFG_0 | SPI_I2SCFGR_I2SCFG_1) /*!< Master Rx configuration */
/**
* @}
*/
/** @defgroup I2S_LL_EC_PRESCALER_FACTOR Prescaler Factor
* @{
*/
#define LL_I2S_PRESCALER_PARITY_EVEN ((uint32_t)0x00000000U) /*!< Odd factor: Real divider value is = I2SDIV * 2 */
#define LL_I2S_PRESCALER_PARITY_ODD (SPI_I2SPR_ODD >> 8U) /*!< Odd factor: Real divider value is = (I2SDIV * 2)+1 */
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup I2S_LL_EC_MCLK_OUTPUT MCLK Output
* @{
*/
#define LL_I2S_MCLK_OUTPUT_DISABLE ((uint32_t)0x00000000U) /*!< Master clock output is disabled */
#define LL_I2S_MCLK_OUTPUT_ENABLE (SPI_I2SPR_MCKOE) /*!< Master clock output is enabled */
/**
* @}
*/
/** @defgroup I2S_LL_EC_AUDIO_FREQ Audio Frequency
* @{
*/
#define LL_I2S_AUDIOFREQ_192K ((uint32_t)192000) /*!< Audio Frequency configuration 192000 Hz */
#define LL_I2S_AUDIOFREQ_96K ((uint32_t) 96000) /*!< Audio Frequency configuration 96000 Hz */
#define LL_I2S_AUDIOFREQ_48K ((uint32_t) 48000) /*!< Audio Frequency configuration 48000 Hz */
#define LL_I2S_AUDIOFREQ_44K ((uint32_t) 44100) /*!< Audio Frequency configuration 44100 Hz */
#define LL_I2S_AUDIOFREQ_32K ((uint32_t) 32000) /*!< Audio Frequency configuration 32000 Hz */
#define LL_I2S_AUDIOFREQ_22K ((uint32_t) 22050) /*!< Audio Frequency configuration 22050 Hz */
#define LL_I2S_AUDIOFREQ_16K ((uint32_t) 16000) /*!< Audio Frequency configuration 16000 Hz */
#define LL_I2S_AUDIOFREQ_11K ((uint32_t) 11025) /*!< Audio Frequency configuration 11025 Hz */
#define LL_I2S_AUDIOFREQ_8K ((uint32_t) 8000) /*!< Audio Frequency configuration 8000 Hz */
#define LL_I2S_AUDIOFREQ_DEFAULT ((uint32_t) 2) /*!< Audio Freq not specified. Register I2SDIV = 2 */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup I2S_LL_Exported_Macros I2S Exported Macros
* @{
*/
/** @defgroup I2S_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in I2S register
* @param __INSTANCE__ I2S Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_I2S_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in I2S register
* @param __INSTANCE__ I2S Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_I2S_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup I2S_LL_Exported_Functions I2S Exported Functions
* @{
*/
/** @defgroup I2S_LL_EF_Configuration Configuration
* @{
*/
/**
* @brief Select I2S mode and Enable I2S peripheral
* @rmtoll I2SCFGR I2SMOD LL_I2S_Enable\n
* I2SCFGR I2SE LL_I2S_Enable
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_Enable(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE);
}
/**
* @brief Disable I2S peripheral
* @rmtoll I2SCFGR I2SE LL_I2S_Disable
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_Disable(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SE);
}
/**
* @brief Check if I2S peripheral is enabled
* @rmtoll I2SCFGR I2SE LL_I2S_IsEnabled
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabled(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SE) == (SPI_I2SCFGR_I2SE));
}
/**
* @brief Set I2S data frame length
* @rmtoll I2SCFGR DATLEN LL_I2S_SetDataFormat\n
* I2SCFGR CHLEN LL_I2S_SetDataFormat
* @param SPIx SPI Instance
* @param DataFormat This parameter can be one of the following values:
* @arg @ref LL_I2S_DATAFORMAT_16B
* @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED
* @arg @ref LL_I2S_DATAFORMAT_24B
* @arg @ref LL_I2S_DATAFORMAT_32B
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetDataFormat(SPI_TypeDef *SPIx, uint32_t DataFormat)
{
MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN, DataFormat);
}
/**
* @brief Get I2S data frame length
* @rmtoll I2SCFGR DATLEN LL_I2S_GetDataFormat\n
* I2SCFGR CHLEN LL_I2S_GetDataFormat
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_I2S_DATAFORMAT_16B
* @arg @ref LL_I2S_DATAFORMAT_16B_EXTENDED
* @arg @ref LL_I2S_DATAFORMAT_24B
* @arg @ref LL_I2S_DATAFORMAT_32B
*/
__STATIC_INLINE uint32_t LL_I2S_GetDataFormat(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN));
}
/**
* @brief Set I2S clock polarity
* @rmtoll I2SCFGR CKPOL LL_I2S_SetClockPolarity
* @param SPIx SPI Instance
* @param ClockPolarity This parameter can be one of the following values:
* @arg @ref LL_I2S_POLARITY_LOW
* @arg @ref LL_I2S_POLARITY_HIGH
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetClockPolarity(SPI_TypeDef *SPIx, uint32_t ClockPolarity)
{
SET_BIT(SPIx->I2SCFGR, ClockPolarity);
}
/**
* @brief Get I2S clock polarity
* @rmtoll I2SCFGR CKPOL LL_I2S_GetClockPolarity
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_I2S_POLARITY_LOW
* @arg @ref LL_I2S_POLARITY_HIGH
*/
__STATIC_INLINE uint32_t LL_I2S_GetClockPolarity(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_CKPOL));
}
/**
* @brief Set I2S standard protocol
* @rmtoll I2SCFGR I2SSTD LL_I2S_SetStandard\n
* I2SCFGR PCMSYNC LL_I2S_SetStandard
* @param SPIx SPI Instance
* @param Standard This parameter can be one of the following values:
* @arg @ref LL_I2S_STANDARD_PHILIPS
* @arg @ref LL_I2S_STANDARD_MSB
* @arg @ref LL_I2S_STANDARD_LSB
* @arg @ref LL_I2S_STANDARD_PCM_SHORT
* @arg @ref LL_I2S_STANDARD_PCM_LONG
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetStandard(SPI_TypeDef *SPIx, uint32_t Standard)
{
MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC, Standard);
}
/**
* @brief Get I2S standard protocol
* @rmtoll I2SCFGR I2SSTD LL_I2S_GetStandard\n
* I2SCFGR PCMSYNC LL_I2S_GetStandard
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_I2S_STANDARD_PHILIPS
* @arg @ref LL_I2S_STANDARD_MSB
* @arg @ref LL_I2S_STANDARD_LSB
* @arg @ref LL_I2S_STANDARD_PCM_SHORT
* @arg @ref LL_I2S_STANDARD_PCM_LONG
*/
__STATIC_INLINE uint32_t LL_I2S_GetStandard(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC));
}
/**
* @brief Set I2S transfer mode
* @rmtoll I2SCFGR I2SCFG LL_I2S_SetTransferMode
* @param SPIx SPI Instance
* @param Mode This parameter can be one of the following values:
* @arg @ref LL_I2S_MODE_SLAVE_TX
* @arg @ref LL_I2S_MODE_SLAVE_RX
* @arg @ref LL_I2S_MODE_MASTER_TX
* @arg @ref LL_I2S_MODE_MASTER_RX
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetTransferMode(SPI_TypeDef *SPIx, uint32_t Mode)
{
MODIFY_REG(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG, Mode);
}
/**
* @brief Get I2S transfer mode
* @rmtoll I2SCFGR I2SCFG LL_I2S_GetTransferMode
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_I2S_MODE_SLAVE_TX
* @arg @ref LL_I2S_MODE_SLAVE_RX
* @arg @ref LL_I2S_MODE_MASTER_TX
* @arg @ref LL_I2S_MODE_MASTER_RX
*/
__STATIC_INLINE uint32_t LL_I2S_GetTransferMode(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->I2SCFGR, SPI_I2SCFGR_I2SCFG));
}
/**
* @brief Set I2S linear prescaler
* @rmtoll I2SPR I2SDIV LL_I2S_SetPrescalerLinear
* @param SPIx SPI Instance
* @param PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetPrescalerLinear(SPI_TypeDef *SPIx, uint8_t PrescalerLinear)
{
MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_I2SDIV, PrescalerLinear);
}
/**
* @brief Get I2S linear prescaler
* @rmtoll I2SPR I2SDIV LL_I2S_GetPrescalerLinear
* @param SPIx SPI Instance
* @retval PrescalerLinear Value between Min_Data=0x02 and Max_Data=0xFF
*/
__STATIC_INLINE uint32_t LL_I2S_GetPrescalerLinear(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_I2SDIV));
}
/**
* @brief Set I2S parity prescaler
* @rmtoll I2SPR ODD LL_I2S_SetPrescalerParity
* @param SPIx SPI Instance
* @param PrescalerParity This parameter can be one of the following values:
* @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
* @arg @ref LL_I2S_PRESCALER_PARITY_ODD
* @retval None
*/
__STATIC_INLINE void LL_I2S_SetPrescalerParity(SPI_TypeDef *SPIx, uint32_t PrescalerParity)
{
MODIFY_REG(SPIx->I2SPR, SPI_I2SPR_ODD, PrescalerParity << 8U);
}
/**
* @brief Get I2S parity prescaler
* @rmtoll I2SPR ODD LL_I2S_GetPrescalerParity
* @param SPIx SPI Instance
* @retval Returned value can be one of the following values:
* @arg @ref LL_I2S_PRESCALER_PARITY_EVEN
* @arg @ref LL_I2S_PRESCALER_PARITY_ODD
*/
__STATIC_INLINE uint32_t LL_I2S_GetPrescalerParity(SPI_TypeDef *SPIx)
{
return (uint32_t)(READ_BIT(SPIx->I2SPR, SPI_I2SPR_ODD) >> 8U);
}
/**
* @brief Enable the master clock ouput (Pin MCK)
* @rmtoll I2SPR MCKOE LL_I2S_EnableMasterClock
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableMasterClock(SPI_TypeDef *SPIx)
{
SET_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE);
}
/**
* @brief Disable the master clock ouput (Pin MCK)
* @rmtoll I2SPR MCKOE LL_I2S_DisableMasterClock
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableMasterClock(SPI_TypeDef *SPIx)
{
CLEAR_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE);
}
/**
* @brief Check if the master clock ouput (Pin MCK) is enabled
* @rmtoll I2SPR MCKOE LL_I2S_IsEnabledMasterClock
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledMasterClock(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->I2SPR, SPI_I2SPR_MCKOE) == (SPI_I2SPR_MCKOE));
}
/**
* @}
*/
/** @defgroup I2S_LL_EF_FLAG FLAG Management
* @{
*/
/**
* @brief Check if Rx buffer is not empty
* @rmtoll SR RXNE LL_I2S_IsActiveFlag_RXNE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_RXNE(SPI_TypeDef *SPIx)
{
return LL_SPI_IsActiveFlag_RXNE(SPIx);
}
/**
* @brief Check if Tx buffer is empty
* @rmtoll SR TXE LL_I2S_IsActiveFlag_TXE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_TXE(SPI_TypeDef *SPIx)
{
return LL_SPI_IsActiveFlag_TXE(SPIx);
}
/**
* @brief Get busy flag
* @rmtoll SR BSY LL_I2S_IsActiveFlag_BSY
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_BSY(SPI_TypeDef *SPIx)
{
return LL_SPI_IsActiveFlag_BSY(SPIx);
}
/**
* @brief Get overrun error flag
* @rmtoll SR OVR LL_I2S_IsActiveFlag_OVR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_OVR(SPI_TypeDef *SPIx)
{
return LL_SPI_IsActiveFlag_OVR(SPIx);
}
/**
* @brief Get underrun error flag
* @rmtoll SR UDR LL_I2S_IsActiveFlag_UDR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_UDR(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->SR, SPI_SR_UDR) == (SPI_SR_UDR));
}
/**
* @brief Get frame format error flag
* @rmtoll SR FRE LL_I2S_IsActiveFlag_FRE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_FRE(SPI_TypeDef *SPIx)
{
return LL_SPI_IsActiveFlag_FRE(SPIx);
}
/**
* @brief Get channel side flag.
* @note 0: Channel Left has to be transmitted or has been received\n
* 1: Channel Right has to be transmitted or has been received\n
* It has no significance in PCM mode.
* @rmtoll SR CHSIDE LL_I2S_IsActiveFlag_CHSIDE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsActiveFlag_CHSIDE(SPI_TypeDef *SPIx)
{
return (READ_BIT(SPIx->SR, SPI_SR_CHSIDE) == (SPI_SR_CHSIDE));
}
/**
* @brief Clear overrun error flag
* @rmtoll SR OVR LL_I2S_ClearFlag_OVR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_ClearFlag_OVR(SPI_TypeDef *SPIx)
{
LL_SPI_ClearFlag_OVR(SPIx);
}
/**
* @brief Clear underrun error flag
* @rmtoll SR UDR LL_I2S_ClearFlag_UDR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_ClearFlag_UDR(SPI_TypeDef *SPIx)
{
__IO uint32_t tmpreg;
tmpreg = SPIx->SR;
(void)tmpreg;
}
/**
* @brief Clear frame format error flag
* @rmtoll SR FRE LL_I2S_ClearFlag_FRE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_ClearFlag_FRE(SPI_TypeDef *SPIx)
{
LL_SPI_ClearFlag_FRE(SPIx);
}
/**
* @}
*/
/** @defgroup I2S_LL_EF_IT Interrupt Management
* @{
*/
/**
* @brief Enable error IT
* @note This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode).
* @rmtoll CR2 ERRIE LL_I2S_EnableIT_ERR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableIT_ERR(SPI_TypeDef *SPIx)
{
LL_SPI_EnableIT_ERR(SPIx);
}
/**
* @brief Enable Rx buffer not empty IT
* @rmtoll CR2 RXNEIE LL_I2S_EnableIT_RXNE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableIT_RXNE(SPI_TypeDef *SPIx)
{
LL_SPI_EnableIT_RXNE(SPIx);
}
/**
* @brief Enable Tx buffer empty IT
* @rmtoll CR2 TXEIE LL_I2S_EnableIT_TXE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableIT_TXE(SPI_TypeDef *SPIx)
{
LL_SPI_EnableIT_TXE(SPIx);
}
/**
* @brief Disable error IT
* @note This bit controls the generation of an interrupt when an error condition occurs (OVR, UDR and FRE in I2S mode).
* @rmtoll CR2 ERRIE LL_I2S_DisableIT_ERR
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableIT_ERR(SPI_TypeDef *SPIx)
{
LL_SPI_DisableIT_ERR(SPIx);
}
/**
* @brief Disable Rx buffer not empty IT
* @rmtoll CR2 RXNEIE LL_I2S_DisableIT_RXNE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableIT_RXNE(SPI_TypeDef *SPIx)
{
LL_SPI_DisableIT_RXNE(SPIx);
}
/**
* @brief Disable Tx buffer empty IT
* @rmtoll CR2 TXEIE LL_I2S_DisableIT_TXE
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableIT_TXE(SPI_TypeDef *SPIx)
{
LL_SPI_DisableIT_TXE(SPIx);
}
/**
* @brief Check if ERR IT is enabled
* @rmtoll CR2 ERRIE LL_I2S_IsEnabledIT_ERR
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_ERR(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledIT_ERR(SPIx);
}
/**
* @brief Check if RXNE IT is enabled
* @rmtoll CR2 RXNEIE LL_I2S_IsEnabledIT_RXNE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_RXNE(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledIT_RXNE(SPIx);
}
/**
* @brief Check if TXE IT is enabled
* @rmtoll CR2 TXEIE LL_I2S_IsEnabledIT_TXE
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledIT_TXE(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledIT_TXE(SPIx);
}
/**
* @}
*/
/** @defgroup I2S_LL_EF_DMA DMA Management
* @{
*/
/**
* @brief Enable DMA Rx
* @rmtoll CR2 RXDMAEN LL_I2S_EnableDMAReq_RX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableDMAReq_RX(SPI_TypeDef *SPIx)
{
LL_SPI_EnableDMAReq_RX(SPIx);
}
/**
* @brief Disable DMA Rx
* @rmtoll CR2 RXDMAEN LL_I2S_DisableDMAReq_RX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableDMAReq_RX(SPI_TypeDef *SPIx)
{
LL_SPI_DisableDMAReq_RX(SPIx);
}
/**
* @brief Check if DMA Rx is enabled
* @rmtoll CR2 RXDMAEN LL_I2S_IsEnabledDMAReq_RX
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_RX(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledDMAReq_RX(SPIx);
}
/**
* @brief Enable DMA Tx
* @rmtoll CR2 TXDMAEN LL_I2S_EnableDMAReq_TX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_EnableDMAReq_TX(SPI_TypeDef *SPIx)
{
LL_SPI_EnableDMAReq_TX(SPIx);
}
/**
* @brief Disable DMA Tx
* @rmtoll CR2 TXDMAEN LL_I2S_DisableDMAReq_TX
* @param SPIx SPI Instance
* @retval None
*/
__STATIC_INLINE void LL_I2S_DisableDMAReq_TX(SPI_TypeDef *SPIx)
{
LL_SPI_DisableDMAReq_TX(SPIx);
}
/**
* @brief Check if DMA Tx is enabled
* @rmtoll CR2 TXDMAEN LL_I2S_IsEnabledDMAReq_TX
* @param SPIx SPI Instance
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_I2S_IsEnabledDMAReq_TX(SPI_TypeDef *SPIx)
{
return LL_SPI_IsEnabledDMAReq_TX(SPIx);
}
/**
* @}
*/
/** @defgroup I2S_LL_EF_DATA DATA Management
* @{
*/
/**
* @brief Read 16-Bits in data register
* @rmtoll DR DR LL_I2S_ReceiveData16
* @param SPIx SPI Instance
* @retval RxData Value between Min_Data=0x0000 and Max_Data=0xFFFF
*/
__STATIC_INLINE uint16_t LL_I2S_ReceiveData16(SPI_TypeDef *SPIx)
{
return LL_SPI_ReceiveData16(SPIx);
}
/**
* @brief Write 16-Bits in data register
* @rmtoll DR DR LL_I2S_TransmitData16
* @param SPIx SPI Instance
* @param TxData Value between Min_Data=0x0000 and Max_Data=0xFFFF
* @retval None
*/
__STATIC_INLINE void LL_I2S_TransmitData16(SPI_TypeDef *SPIx, uint16_t TxData)
{
LL_SPI_TransmitData16(SPIx, TxData);
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup I2S_LL_EF_Init Initialization and de-initialization functions
* @{
*/
ErrorStatus LL_I2S_DeInit(SPI_TypeDef *SPIx);
ErrorStatus LL_I2S_Init(SPI_TypeDef *SPIx, LL_I2S_InitTypeDef *I2S_InitStruct);
void LL_I2S_StructInit(LL_I2S_InitTypeDef *I2S_InitStruct);
void LL_I2S_ConfigPrescaler(SPI_TypeDef *SPIx, uint32_t PrescalerLinear, uint32_t PrescalerParity);
#if defined (SPI_I2S_FULLDUPLEX_SUPPORT)
ErrorStatus LL_I2S_InitFullDuplex(SPI_TypeDef *I2Sxext, LL_I2S_InitTypeDef *I2S_InitStruct);
#endif /* SPI_I2S_FULLDUPLEX_SUPPORT */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* SPI_I2S_SUPPORT */
#endif /* defined (SPI1) || defined (SPI2) || defined (SPI3) || defined (SPI4) */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32F3xx_LL_SPI_H */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/