mirror of
https://github.com/rene-dev/stmbl.git
synced 2024-12-22 00:22:28 +00:00
1591 lines
53 KiB
C
1591 lines
53 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32f3xx_hal_rtc.c
|
|
* @author MCD Application Team
|
|
* @brief RTC HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the Real-Time Clock (RTC) peripheral:
|
|
* + Initialization
|
|
* + Calendar (Time and Date) configuration
|
|
* + Alarms (Alarm A and Alarm B) configuration
|
|
* + WakeUp Timer configuration
|
|
* + TimeStamp configuration
|
|
* + Tampers configuration
|
|
* + Backup Data Registers configuration
|
|
* + RTC Tamper and TimeStamp Pins Selection
|
|
* + Interrupts and flags management
|
|
*
|
|
@verbatim
|
|
|
|
===============================================================================
|
|
##### RTC Operating Condition #####
|
|
===============================================================================
|
|
[..] The real-time clock (RTC) and the RTC backup registers can be powered
|
|
from the VBAT voltage when the main VDD supply is powered off.
|
|
To retain the content of the RTC backup registers and supply the RTC
|
|
when VDD is turned off, VBAT pin can be connected to an optional
|
|
standby voltage supplied by a battery or by another source.
|
|
|
|
[..] To allow the RTC to operate even when the main digital supply (VDD)
|
|
is turned off, the VBAT pin powers the following blocks:
|
|
(#) The RTC
|
|
(#) The LSE oscillator
|
|
(#) PC13 to PC15 I/Os (when available)
|
|
|
|
[..] When the backup domain is supplied by VDD (analog switch connected
|
|
to VDD), the following functions are available:
|
|
(#) PC14 and PC15 can be used as either GPIO or LSE pins
|
|
(#) PC13 can be used as a GPIO or as the RTC_OUT pin
|
|
|
|
[..] When the backup domain is supplied by VBAT (analog switch connected
|
|
to VBAT because VDD is not present), the following functions are available:
|
|
(#) PC14 and PC15 can be used as LSE pins only
|
|
(#) PC13 can be used as the RTC_OUT pin
|
|
|
|
##### Backup Domain Reset #####
|
|
===============================================================================
|
|
[..] The backup domain reset sets all RTC registers and the RCC_BDCR
|
|
register to their reset values.
|
|
A backup domain reset is generated when one of the following events
|
|
occurs:
|
|
(#) Software reset, triggered by setting the BDRST bit in the
|
|
RCC Backup domain control register (RCC_BDCR).
|
|
(#) VDD or VBAT power on, if both supplies have previously been
|
|
powered off.
|
|
|
|
##### Backup Domain Access #####
|
|
===================================================================
|
|
[..] After reset, the backup domain (RTC registers, RTC backup data
|
|
registers and backup SRAM) is protected against possible unwanted write
|
|
accesses.
|
|
|
|
[..] To enable access to the RTC Domain and RTC registers, proceed as follows:
|
|
(#) Enable the Power Controller (PWR) APB1 interface clock using the
|
|
__HAL_RCC_PWR_CLK_ENABLE() function.
|
|
(#) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
|
|
(#) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function.
|
|
(#) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.
|
|
|
|
|
|
##### How to use RTC Driver #####
|
|
===================================================================
|
|
[..]
|
|
(+) Enable the RTC domain access (see description in the section above).
|
|
(+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
|
|
format using the HAL_RTC_Init() function.
|
|
|
|
*** Time and Date configuration ***
|
|
===================================
|
|
[..]
|
|
(+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
|
|
and HAL_RTC_SetDate() functions.
|
|
(+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.
|
|
|
|
*** Alarm configuration ***
|
|
===========================
|
|
[..]
|
|
(+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
|
|
You can also configure the RTC Alarm with interrupt mode using the
|
|
HAL_RTC_SetAlarm_IT() function.
|
|
(+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
|
|
|
|
*** RTC Wakeup configuration ***
|
|
================================
|
|
[..]
|
|
(+) To configure the RTC Wakeup Clock source and Counter use the HAL_RTC_SetWakeUpTimer()
|
|
function. You can also configure the RTC Wakeup timer with interrupt mode
|
|
using the HAL_RTC_SetWakeUpTimer_IT() function.
|
|
(+) To read the RTC WakeUp Counter register, use the HAL_RTC_GetWakeUpTimer()
|
|
function.
|
|
|
|
*** TimeStamp configuration ***
|
|
===============================
|
|
[..]
|
|
(+) Configure the RTC_AF trigger and enables the RTC TimeStamp using the
|
|
HAL_RTC_SetTimeStamp() function. You can also configure the RTC TimeStamp with
|
|
interrupt mode using the HAL_RTC_SetTimeStamp_IT() function.
|
|
(+) To read the RTC TimeStamp Time and Date register, use the HAL_RTC_GetTimeStamp()
|
|
function.
|
|
|
|
*** Tamper configuration ***
|
|
============================
|
|
[..]
|
|
(+) Enable the RTC Tamper and Configure the Tamper filter count, trigger Edge
|
|
or Level according to the Tamper filter (if equal to 0 Edge else Level)
|
|
value, sampling frequency, precharge or discharge and Pull-UP using the
|
|
HAL_RTC_SetTamper() function. You can configure RTC Tamper with interrupt
|
|
mode using HAL_RTC_SetTamper_IT() function.
|
|
|
|
*** Backup Data Registers configuration ***
|
|
===========================================
|
|
[..]
|
|
(+) To write to the RTC Backup Data registers, use the HAL_RTC_BKUPWrite()
|
|
function.
|
|
(+) To read the RTC Backup Data registers, use the HAL_RTC_BKUPRead()
|
|
function.
|
|
|
|
|
|
##### RTC and low power modes #####
|
|
===================================================================
|
|
[..] The MCU can be woken up from a low power mode by an RTC alternate
|
|
function.
|
|
[..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
|
|
RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
|
|
These RTC alternate functions can wake up the system from the Stop and
|
|
Standby low power modes.
|
|
[..] The system can also wake up from low power modes without depending
|
|
on an external interrupt (Auto-wakeup mode), by using the RTC alarm
|
|
or the RTC wakeup events.
|
|
[..] The RTC provides a programmable time base for waking up from the
|
|
Stop or Standby mode at regular intervals.
|
|
Wakeup from STOP and Standby modes is possible only when the RTC clock source
|
|
is LSE or LSI.
|
|
|
|
@endverbatim
|
|
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32f3xx_hal.h"
|
|
|
|
/** @addtogroup STM32F3xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @addtogroup RTC
|
|
* @brief RTC HAL module driver
|
|
* @{
|
|
*/
|
|
|
|
#ifdef HAL_RTC_MODULE_ENABLED
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/* Exported functions ---------------------------------------------------------*/
|
|
|
|
/** @addtogroup RTC_Exported_Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @addtogroup RTC_Exported_Functions_Group1
|
|
* @brief Initialization and Configuration functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Initialization and de-initialization functions #####
|
|
===============================================================================
|
|
[..] This section provides functions allowing to initialize and configure the
|
|
RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
|
|
RTC registers Write protection, enter and exit the RTC initialization mode,
|
|
RTC registers synchronization check and reference clock detection enable.
|
|
(#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
|
|
It is split into 2 programmable prescalers to minimize power consumption.
|
|
(++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
|
|
(++) When both prescalers are used, it is recommended to configure the
|
|
asynchronous prescaler to a high value to minimize power consumption.
|
|
(#) All RTC registers are Write protected. Writing to the RTC registers
|
|
is enabled by writing a key into the Write Protection register, RTC_WPR.
|
|
(#) To configure the RTC Calendar, user application should enter
|
|
initialization mode. In this mode, the calendar counter is stopped
|
|
and its value can be updated. When the initialization sequence is
|
|
complete, the calendar restarts counting after 4 RTCCLK cycles.
|
|
(#) To read the calendar through the shadow registers after Calendar
|
|
initialization, calendar update or after wakeup from low power modes
|
|
the software must first clear the RSF flag. The software must then
|
|
wait until it is set again before reading the calendar, which means
|
|
that the calendar registers have been correctly copied into the
|
|
RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function
|
|
implements the above software sequence (RSF clear and RSF check).
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initialize the RTC according to the specified parameters
|
|
* in the RTC_InitTypeDef structure and initialize the associated handle.
|
|
* @param hrtc RTC handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
|
|
{
|
|
/* Check the RTC peripheral state */
|
|
if(hrtc == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
|
|
assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
|
|
assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
|
|
assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
|
|
assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
|
|
assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
|
|
assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
|
|
|
|
if(hrtc->State == HAL_RTC_STATE_RESET)
|
|
{
|
|
/* Allocate lock resource and initialize it */
|
|
hrtc->Lock = HAL_UNLOCKED;
|
|
|
|
/* Initialize RTC MSP */
|
|
HAL_RTC_MspInit(hrtc);
|
|
}
|
|
|
|
/* Set RTC state */
|
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
|
|
|
/* Disable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
|
|
/* Set Initialization mode */
|
|
if(RTC_EnterInitMode(hrtc) != HAL_OK)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
/* Set RTC state */
|
|
hrtc->State = HAL_RTC_STATE_ERROR;
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
/* Clear RTC_CR FMT, OSEL and POL Bits */
|
|
hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL));
|
|
/* Set RTC_CR register */
|
|
hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
|
|
|
|
/* Configure the RTC PRER */
|
|
hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv);
|
|
hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << 16U);
|
|
|
|
/* Exit Initialization mode */
|
|
hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;
|
|
|
|
/* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
|
|
if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
|
|
{
|
|
if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_ERROR;
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
hrtc->Instance->TAFCR &= (uint32_t)~RTC_TAFCR_ALARMOUTTYPE;
|
|
hrtc->Instance->TAFCR |= (uint32_t)(hrtc->Init.OutPutType);
|
|
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
/* Set RTC state */
|
|
hrtc->State = HAL_RTC_STATE_READY;
|
|
|
|
return HAL_OK;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief DeInitialize the RTC peripheral.
|
|
* @param hrtc RTC handle
|
|
* @note This function doesn't reset the RTC Backup Data registers.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
|
|
{
|
|
uint32_t tickstart = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
|
|
|
|
/* Set RTC state */
|
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
|
|
|
/* Disable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
|
|
/* Set Initialization mode */
|
|
if(RTC_EnterInitMode(hrtc) != HAL_OK)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
/* Set RTC state */
|
|
hrtc->State = HAL_RTC_STATE_ERROR;
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
/* Reset TR, DR and CR registers */
|
|
hrtc->Instance->TR = 0x00000000U;
|
|
hrtc->Instance->DR = (RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0);
|
|
/* Reset All CR bits except CR[2:0] */
|
|
hrtc->Instance->CR &= RTC_CR_WUCKSEL;
|
|
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till WUTWF flag is set and if Time out is reached exit */
|
|
while(((hrtc->Instance->ISR) & RTC_ISR_WUTWF) == (uint32_t)RESET)
|
|
{
|
|
if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
/* Set RTC state */
|
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Reset all RTC CR register bits */
|
|
hrtc->Instance->CR &= 0x00000000U;
|
|
hrtc->Instance->WUTR = RTC_WUTR_WUT;
|
|
hrtc->Instance->PRER = ((uint32_t)(RTC_PRER_PREDIV_A | 0x000000FFU));
|
|
hrtc->Instance->ALRMAR = 0x00000000U;
|
|
hrtc->Instance->ALRMBR = 0x00000000U;
|
|
hrtc->Instance->SHIFTR = 0x00000000U;
|
|
hrtc->Instance->CALR = 0x00000000U;
|
|
hrtc->Instance->ALRMASSR = 0x00000000U;
|
|
hrtc->Instance->ALRMBSSR = 0x00000000U;
|
|
|
|
/* Reset ISR register and exit initialization mode */
|
|
hrtc->Instance->ISR = 0x00000000U;
|
|
|
|
/* Reset Tamper and alternate functions configuration register */
|
|
hrtc->Instance->TAFCR = 0x00000000U;
|
|
|
|
/* If RTC_CR_BYPSHAD bit = 0U, wait for synchro else this check is not needed */
|
|
if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
|
|
{
|
|
if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_ERROR;
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
/* De-Initialize RTC MSP */
|
|
HAL_RTC_MspDeInit(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_RESET;
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the RTC MSP.
|
|
* @param hrtc RTC handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_RTC_MspInit(RTC_HandleTypeDef* hrtc)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hrtc);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_RTC_MspInit could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief DeInitialize the RTC MSP.
|
|
* @param hrtc RTC handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef* hrtc)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hrtc);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_RTC_MspDeInit could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @addtogroup RTC_Exported_Functions_Group2
|
|
* @brief RTC Time and Date functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### RTC Time and Date functions #####
|
|
===============================================================================
|
|
|
|
[..] This section provides functions allowing to configure Time and Date features
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Set RTC current time.
|
|
* @param hrtc RTC handle
|
|
* @param sTime Pointer to Time structure
|
|
* @param Format Specifies the format of the entered parameters.
|
|
* This parameter can be one of the following values:
|
|
* @arg RTC_FORMAT_BIN: Binary data format
|
|
* @arg RTC_FORMAT_BCD: BCD data format
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
|
|
{
|
|
uint32_t tmpreg = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RTC_FORMAT(Format));
|
|
assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
|
|
assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
|
|
|
if(Format == RTC_FORMAT_BIN)
|
|
{
|
|
if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
|
|
{
|
|
assert_param(IS_RTC_HOUR12(sTime->Hours));
|
|
assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
|
|
}
|
|
else
|
|
{
|
|
sTime->TimeFormat = 0x00U;
|
|
assert_param(IS_RTC_HOUR24(sTime->Hours));
|
|
}
|
|
assert_param(IS_RTC_MINUTES(sTime->Minutes));
|
|
assert_param(IS_RTC_SECONDS(sTime->Seconds));
|
|
|
|
tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << 16U) | \
|
|
((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << 8U) | \
|
|
((uint32_t)RTC_ByteToBcd2(sTime->Seconds)) | \
|
|
(((uint32_t)sTime->TimeFormat) << 16U));
|
|
}
|
|
else
|
|
{
|
|
if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
|
|
{
|
|
tmpreg = RTC_Bcd2ToByte(sTime->Hours);
|
|
assert_param(IS_RTC_HOUR12(tmpreg));
|
|
assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
|
|
}
|
|
else
|
|
{
|
|
sTime->TimeFormat = 0x00U;
|
|
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
|
|
}
|
|
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
|
|
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
|
|
tmpreg = (((uint32_t)(sTime->Hours) << 16U) | \
|
|
((uint32_t)(sTime->Minutes) << 8U) | \
|
|
((uint32_t)sTime->Seconds) | \
|
|
((uint32_t)(sTime->TimeFormat) << 16U));
|
|
}
|
|
|
|
/* Disable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
|
|
/* Set Initialization mode */
|
|
if(RTC_EnterInitMode(hrtc) != HAL_OK)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
/* Set RTC state */
|
|
hrtc->State = HAL_RTC_STATE_ERROR;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
/* Set the RTC_TR register */
|
|
hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);
|
|
|
|
/* Clear the bits to be configured */
|
|
hrtc->Instance->CR &= ((uint32_t)~RTC_CR_BCK);
|
|
|
|
/* Configure the RTC_CR register */
|
|
hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);
|
|
|
|
/* Exit Initialization mode */
|
|
hrtc->Instance->ISR &= ((uint32_t)~RTC_ISR_INIT);
|
|
|
|
/* If CR_BYPSHAD bit = 0U, wait for synchro else this check is not needed */
|
|
if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
|
|
{
|
|
if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_ERROR;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_READY;
|
|
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_OK;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Get RTC current time.
|
|
* @param hrtc RTC handle
|
|
* @param sTime Pointer to Time structure
|
|
* @param Format Specifies the format of the entered parameters.
|
|
* This parameter can be one of the following values:
|
|
* @arg RTC_FORMAT_BIN: Binary data format
|
|
* @arg RTC_FORMAT_BCD: BCD data format
|
|
* @note You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
|
|
* value in second fraction ratio with time unit following generic formula:
|
|
* Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
|
|
* This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
|
|
* @note Call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
|
|
* in the higher-order calendar shadow registers.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
|
|
{
|
|
uint32_t tmpreg = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RTC_FORMAT(Format));
|
|
|
|
/* Get subseconds structure field from the corresponding register*/
|
|
sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);
|
|
|
|
/* Get SecondFraction structure field from the corresponding register field*/
|
|
sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S);
|
|
|
|
/* Get the TR register */
|
|
tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);
|
|
|
|
/* Fill the structure fields with the read parameters */
|
|
sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16U);
|
|
sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8U);
|
|
sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU));
|
|
sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16U);
|
|
|
|
/* Check the input parameters format */
|
|
if(Format == RTC_FORMAT_BIN)
|
|
{
|
|
/* Convert the time structure parameters to Binary format */
|
|
sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
|
|
sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
|
|
sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Set RTC current date.
|
|
* @param hrtc RTC handle
|
|
* @param sDate Pointer to date structure
|
|
* @param Format specifies the format of the entered parameters.
|
|
* This parameter can be one of the following values:
|
|
* @arg RTC_FORMAT_BIN: Binary data format
|
|
* @arg RTC_FORMAT_BCD: BCD data format
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
|
|
{
|
|
uint32_t datetmpreg = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RTC_FORMAT(Format));
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
|
|
|
if((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
|
|
{
|
|
sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
|
|
}
|
|
|
|
assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
|
|
|
|
if(Format == RTC_FORMAT_BIN)
|
|
{
|
|
assert_param(IS_RTC_YEAR(sDate->Year));
|
|
assert_param(IS_RTC_MONTH(sDate->Month));
|
|
assert_param(IS_RTC_DATE(sDate->Date));
|
|
|
|
datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << 16U) | \
|
|
((uint32_t)RTC_ByteToBcd2(sDate->Month) << 8U) | \
|
|
((uint32_t)RTC_ByteToBcd2(sDate->Date)) | \
|
|
((uint32_t)sDate->WeekDay << 13U));
|
|
}
|
|
else
|
|
{
|
|
assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
|
|
datetmpreg = RTC_Bcd2ToByte(sDate->Month);
|
|
assert_param(IS_RTC_MONTH(datetmpreg));
|
|
datetmpreg = RTC_Bcd2ToByte(sDate->Date);
|
|
assert_param(IS_RTC_DATE(datetmpreg));
|
|
|
|
datetmpreg = ((((uint32_t)sDate->Year) << 16U) | \
|
|
(((uint32_t)sDate->Month) << 8U) | \
|
|
((uint32_t)sDate->Date) | \
|
|
(((uint32_t)sDate->WeekDay) << 13U));
|
|
}
|
|
|
|
/* Disable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
|
|
/* Set Initialization mode */
|
|
if(RTC_EnterInitMode(hrtc) != HAL_OK)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
/* Set RTC state*/
|
|
hrtc->State = HAL_RTC_STATE_ERROR;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
/* Set the RTC_DR register */
|
|
hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);
|
|
|
|
/* Exit Initialization mode */
|
|
hrtc->Instance->ISR &= ((uint32_t)~RTC_ISR_INIT);
|
|
|
|
/* If CR_BYPSHAD bit = 0U, wait for synchro else this check is not needed */
|
|
if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
|
|
{
|
|
if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_ERROR;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_READY ;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_OK;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Get RTC current date.
|
|
* @param hrtc RTC handle
|
|
* @param sDate Pointer to Date structure
|
|
* @param Format Specifies the format of the entered parameters.
|
|
* This parameter can be one of the following values:
|
|
* @arg RTC_FORMAT_BIN : Binary data format
|
|
* @arg RTC_FORMAT_BCD : BCD data format
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
|
|
{
|
|
uint32_t datetmpreg = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RTC_FORMAT(Format));
|
|
|
|
/* Get the DR register */
|
|
datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK);
|
|
|
|
/* Fill the structure fields with the read parameters */
|
|
sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16U);
|
|
sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8U);
|
|
sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU));
|
|
sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13U);
|
|
|
|
/* Check the input parameters format */
|
|
if(Format == RTC_FORMAT_BIN)
|
|
{
|
|
/* Convert the date structure parameters to Binary format */
|
|
sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
|
|
sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
|
|
sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @addtogroup RTC_Exported_Functions_Group3
|
|
* @brief RTC Alarm functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### RTC Alarm functions #####
|
|
===============================================================================
|
|
|
|
[..] This section provides functions allowing to configure Alarm feature
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief Set the specified RTC Alarm.
|
|
* @param hrtc RTC handle
|
|
* @param sAlarm Pointer to Alarm structure
|
|
* @param Format Specifies the format of the entered parameters.
|
|
* This parameter can be one of the following values:
|
|
* @arg RTC_FORMAT_BIN: Binary data format
|
|
* @arg RTC_FORMAT_BCD: BCD data format
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
|
|
{
|
|
uint32_t tickstart = 0U;
|
|
uint32_t tmpreg = 0U, subsecondtmpreg = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RTC_FORMAT(Format));
|
|
assert_param(IS_RTC_ALARM(sAlarm->Alarm));
|
|
assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
|
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
|
|
assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
|
|
assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
|
|
|
if(Format == RTC_FORMAT_BIN)
|
|
{
|
|
if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
|
|
{
|
|
assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
|
|
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
|
}
|
|
else
|
|
{
|
|
sAlarm->AlarmTime.TimeFormat = 0x00U;
|
|
assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
|
|
}
|
|
assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
|
|
assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
|
|
|
|
if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
|
{
|
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
|
|
}
|
|
else
|
|
{
|
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
|
|
}
|
|
|
|
tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16U) | \
|
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8U) | \
|
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
|
|
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16U) | \
|
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24U) | \
|
|
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
|
((uint32_t)sAlarm->AlarmMask));
|
|
}
|
|
else
|
|
{
|
|
if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
|
|
{
|
|
tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
|
|
assert_param(IS_RTC_HOUR12(tmpreg));
|
|
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
|
}
|
|
else
|
|
{
|
|
sAlarm->AlarmTime.TimeFormat = 0x00U;
|
|
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
|
|
}
|
|
|
|
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
|
|
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
|
|
|
|
if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
|
{
|
|
tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
|
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(tmpreg));
|
|
}
|
|
else
|
|
{
|
|
tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
|
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(tmpreg));
|
|
}
|
|
|
|
tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16U) | \
|
|
((uint32_t)(sAlarm->AlarmTime.Minutes) << 8U) | \
|
|
((uint32_t) sAlarm->AlarmTime.Seconds) | \
|
|
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16U) | \
|
|
((uint32_t)(sAlarm->AlarmDateWeekDay) << 24U) | \
|
|
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
|
((uint32_t)sAlarm->AlarmMask));
|
|
}
|
|
|
|
/* Configure the Alarm A or Alarm B Sub Second registers */
|
|
subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
|
|
|
|
/* Disable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
|
|
/* Configure the Alarm register */
|
|
if(sAlarm->Alarm == RTC_ALARM_A)
|
|
{
|
|
/* Disable the Alarm A interrupt */
|
|
__HAL_RTC_ALARMA_DISABLE(hrtc);
|
|
|
|
/* In case of interrupt mode is used, the interrupt source must disabled */
|
|
__HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
|
|
|
|
tickstart = HAL_GetTick();
|
|
/* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
|
|
while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
|
|
{
|
|
if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
|
|
/* Configure the Alarm A Sub Second register */
|
|
hrtc->Instance->ALRMASSR = subsecondtmpreg;
|
|
/* Configure the Alarm state: Enable Alarm */
|
|
__HAL_RTC_ALARMA_ENABLE(hrtc);
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Alarm B interrupt */
|
|
__HAL_RTC_ALARMB_DISABLE(hrtc);
|
|
|
|
/* In case of interrupt mode is used, the interrupt source must disabled */
|
|
__HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
|
|
|
|
tickstart = HAL_GetTick();
|
|
/* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
|
|
while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET)
|
|
{
|
|
if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
|
|
/* Configure the Alarm B Sub Second register */
|
|
hrtc->Instance->ALRMBSSR = subsecondtmpreg;
|
|
/* Configure the Alarm state: Enable Alarm */
|
|
__HAL_RTC_ALARMB_ENABLE(hrtc);
|
|
}
|
|
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
/* Change RTC state */
|
|
hrtc->State = HAL_RTC_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Set the specified RTC Alarm with Interrupt.
|
|
* @param hrtc RTC handle
|
|
* @param sAlarm Pointer to Alarm structure
|
|
* @param Format Specifies the format of the entered parameters.
|
|
* This parameter can be one of the following values:
|
|
* @arg RTC_FORMAT_BIN: Binary data format
|
|
* @arg RTC_FORMAT_BCD: BCD data format
|
|
* @note The Alarm register can only be written when the corresponding Alarm
|
|
* is disabled (Use the HAL_RTC_DeactivateAlarm()).
|
|
* @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
|
|
{
|
|
uint32_t tickstart = 0U;
|
|
uint32_t tmpreg = 0U, subsecondtmpreg = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RTC_FORMAT(Format));
|
|
assert_param(IS_RTC_ALARM(sAlarm->Alarm));
|
|
assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
|
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
|
|
assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
|
|
assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
|
|
|
if(Format == RTC_FORMAT_BIN)
|
|
{
|
|
if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
|
|
{
|
|
assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
|
|
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
|
}
|
|
else
|
|
{
|
|
sAlarm->AlarmTime.TimeFormat = 0x00U;
|
|
assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
|
|
}
|
|
assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
|
|
assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
|
|
|
|
if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
|
{
|
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
|
|
}
|
|
else
|
|
{
|
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
|
|
}
|
|
tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16U) | \
|
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8U) | \
|
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
|
|
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16U) | \
|
|
((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24U) | \
|
|
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
|
((uint32_t)sAlarm->AlarmMask));
|
|
}
|
|
else
|
|
{
|
|
if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
|
|
{
|
|
tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
|
|
assert_param(IS_RTC_HOUR12(tmpreg));
|
|
assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
|
|
}
|
|
else
|
|
{
|
|
sAlarm->AlarmTime.TimeFormat = 0x00U;
|
|
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
|
|
}
|
|
|
|
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
|
|
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
|
|
|
|
if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
|
|
{
|
|
tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
|
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(tmpreg));
|
|
}
|
|
else
|
|
{
|
|
tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
|
|
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(tmpreg));
|
|
}
|
|
tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16U) | \
|
|
((uint32_t)(sAlarm->AlarmTime.Minutes) << 8U) | \
|
|
((uint32_t) sAlarm->AlarmTime.Seconds) | \
|
|
((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16U) | \
|
|
((uint32_t)(sAlarm->AlarmDateWeekDay) << 24U) | \
|
|
((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
|
|
((uint32_t)sAlarm->AlarmMask));
|
|
}
|
|
/* Configure the Alarm A or Alarm B Sub Second registers */
|
|
subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
|
|
|
|
/* Disable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
|
|
/* Configure the Alarm register */
|
|
if(sAlarm->Alarm == RTC_ALARM_A)
|
|
{
|
|
/* Disable the Alarm A interrupt */
|
|
__HAL_RTC_ALARMA_DISABLE(hrtc);
|
|
|
|
/* Clear flag alarm A */
|
|
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
|
|
|
|
tickstart = HAL_GetTick();
|
|
/* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
|
|
while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
|
|
{
|
|
if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
|
|
/* Configure the Alarm A Sub Second register */
|
|
hrtc->Instance->ALRMASSR = subsecondtmpreg;
|
|
/* Configure the Alarm state: Enable Alarm */
|
|
__HAL_RTC_ALARMA_ENABLE(hrtc);
|
|
/* Configure the Alarm interrupt */
|
|
__HAL_RTC_ALARM_ENABLE_IT(hrtc,RTC_IT_ALRA);
|
|
}
|
|
else
|
|
{
|
|
/* Disable the Alarm B interrupt */
|
|
__HAL_RTC_ALARMB_DISABLE(hrtc);
|
|
|
|
/* Clear flag alarm B */
|
|
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
|
|
|
|
tickstart = HAL_GetTick();
|
|
/* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
|
|
while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET)
|
|
{
|
|
if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
|
|
/* Configure the Alarm B Sub Second register */
|
|
hrtc->Instance->ALRMBSSR = subsecondtmpreg;
|
|
/* Configure the Alarm state: Enable Alarm */
|
|
__HAL_RTC_ALARMB_ENABLE(hrtc);
|
|
/* Configure the Alarm interrupt */
|
|
__HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
|
|
}
|
|
|
|
/* RTC Alarm Interrupt Configuration: EXTI configuration */
|
|
__HAL_RTC_ALARM_EXTI_ENABLE_IT();
|
|
|
|
__HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
|
|
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Deactivate the specified RTC Alarm.
|
|
* @param hrtc RTC handle
|
|
* @param Alarm Specifies the Alarm.
|
|
* This parameter can be one of the following values:
|
|
* @arg RTC_ALARM_A : AlarmA
|
|
* @arg RTC_ALARM_B : AlarmB
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
|
|
{
|
|
uint32_t tickstart = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RTC_ALARM(Alarm));
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_BUSY;
|
|
|
|
/* Disable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
|
|
|
|
if(Alarm == RTC_ALARM_A)
|
|
{
|
|
/* AlarmA */
|
|
__HAL_RTC_ALARMA_DISABLE(hrtc);
|
|
|
|
/* In case of interrupt mode is used, the interrupt source must disabled */
|
|
__HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
|
|
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
|
|
while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
|
|
{
|
|
if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* AlarmB */
|
|
__HAL_RTC_ALARMB_DISABLE(hrtc);
|
|
|
|
/* In case of interrupt mode is used, the interrupt source must disabled */
|
|
__HAL_RTC_ALARM_DISABLE_IT(hrtc,RTC_IT_ALRB);
|
|
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
|
|
while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET)
|
|
{
|
|
if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
|
|
{
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
/* Enable the write protection for RTC registers */
|
|
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
|
|
|
|
hrtc->State = HAL_RTC_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hrtc);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Get the RTC Alarm value and masks.
|
|
* @param hrtc RTC handle
|
|
* @param sAlarm Pointer to Date structure
|
|
* @param Alarm Specifies the Alarm.
|
|
* This parameter can be one of the following values:
|
|
* @arg RTC_ALARM_A: AlarmA
|
|
* @arg RTC_ALARM_B: AlarmB
|
|
* @param Format Specifies the format of the entered parameters.
|
|
* This parameter can be one of the following values:
|
|
* @arg RTC_FORMAT_BIN: Binary data format
|
|
* @arg RTC_FORMAT_BCD: BCD data format
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
|
|
{
|
|
uint32_t tmpreg = 0U, subsecondtmpreg = 0U;
|
|
|
|
/* Check the parameters */
|
|
assert_param(IS_RTC_FORMAT(Format));
|
|
assert_param(IS_RTC_ALARM(Alarm));
|
|
|
|
if(Alarm == RTC_ALARM_A)
|
|
{
|
|
/* AlarmA */
|
|
sAlarm->Alarm = RTC_ALARM_A;
|
|
|
|
tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
|
|
subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR ) & RTC_ALRMASSR_SS);
|
|
}
|
|
else
|
|
{
|
|
sAlarm->Alarm = RTC_ALARM_B;
|
|
|
|
tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
|
|
subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);
|
|
}
|
|
|
|
/* Fill the structure with the read parameters */
|
|
sAlarm->AlarmTime.Hours = (uint32_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> 16U);
|
|
sAlarm->AlarmTime.Minutes = (uint32_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> 8U);
|
|
sAlarm->AlarmTime.Seconds = (uint32_t)(tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU));
|
|
sAlarm->AlarmTime.TimeFormat = (uint32_t)((tmpreg & RTC_ALRMAR_PM) >> 16U);
|
|
sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
|
|
sAlarm->AlarmDateWeekDay = (uint32_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> 24U);
|
|
sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
|
|
sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
|
|
|
|
if(Format == RTC_FORMAT_BIN)
|
|
{
|
|
sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
|
|
sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
|
|
sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
|
|
sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Handle Alarm interrupt request.
|
|
* @param hrtc RTC handle
|
|
* @retval None
|
|
*/
|
|
void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef* hrtc)
|
|
{
|
|
/* Get the AlarmA interrupt source enable status */
|
|
if(__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != RESET)
|
|
{
|
|
/* Get the pending status of the AlarmA Interrupt */
|
|
if(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != RESET)
|
|
{
|
|
/* AlarmA callback */
|
|
HAL_RTC_AlarmAEventCallback(hrtc);
|
|
|
|
/* Clear the AlarmA interrupt pending bit */
|
|
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc,RTC_FLAG_ALRAF);
|
|
}
|
|
}
|
|
|
|
/* Get the AlarmB interrupt source enable status */
|
|
if(__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRB) != RESET)
|
|
{
|
|
/* Get the pending status of the AlarmB Interrupt */
|
|
if(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) != RESET)
|
|
{
|
|
/* AlarmB callback */
|
|
HAL_RTCEx_AlarmBEventCallback(hrtc);
|
|
|
|
/* Clear the AlarmB interrupt pending bit */
|
|
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc,RTC_FLAG_ALRBF);
|
|
}
|
|
}
|
|
|
|
/* Clear the EXTI's line Flag for RTC Alarm */
|
|
__HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
|
|
|
|
/* Change RTC state */
|
|
hrtc->State = HAL_RTC_STATE_READY;
|
|
}
|
|
|
|
/**
|
|
* @brief Alarm A callback.
|
|
* @param hrtc RTC handle
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hrtc);
|
|
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
|
the HAL_RTC_AlarmAEventCallback could be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Handle AlarmA Polling request.
|
|
* @param hrtc RTC handle
|
|
* @param Timeout Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
|
|
{
|
|
|
|
uint32_t tickstart = HAL_GetTick();
|
|
|
|
while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == RESET)
|
|
{
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
|
|
{
|
|
hrtc->State = HAL_RTC_STATE_TIMEOUT;
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Clear the Alarm interrupt pending bit */
|
|
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
|
|
|
|
/* Change RTC state */
|
|
hrtc->State = HAL_RTC_STATE_READY;
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @@addtogroup RTC_Exported_Functions_Group4 Peripheral Control functions
|
|
* @brief Peripheral Control functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral Control functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides functions allowing to
|
|
(+) Wait for RTC Time and Date Synchronization
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are
|
|
* synchronized with RTC APB clock.
|
|
* @note The RTC Resynchronization mode is write protected, use the
|
|
* __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
|
|
* @note To read the calendar through the shadow registers after Calendar
|
|
* initialization, calendar update or after wakeup from low power modes
|
|
* the software must first clear the RSF flag.
|
|
* The software must then wait until it is set again before reading
|
|
* the calendar, which means that the calendar registers have been
|
|
* correctly copied into the RTC_TR and RTC_DR shadow registers.
|
|
* @param hrtc RTC handle
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef* hrtc)
|
|
{
|
|
uint32_t tickstart = 0U;
|
|
|
|
/* Clear RSF flag */
|
|
hrtc->Instance->ISR &= (uint32_t)RTC_RSF_MASK;
|
|
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Wait the registers to be synchronised */
|
|
while((hrtc->Instance->ISR & RTC_ISR_RSF) == (uint32_t)RESET)
|
|
{
|
|
if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @@addtogroup RTC_Exported_Functions_Group5 Peripheral State functions
|
|
* @brief Peripheral State functions
|
|
*
|
|
@verbatim
|
|
===============================================================================
|
|
##### Peripheral State functions #####
|
|
===============================================================================
|
|
[..]
|
|
This subsection provides functions allowing to
|
|
(+) Get RTC state
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
/**
|
|
* @brief Return the RTC handle state.
|
|
* @param hrtc RTC handle
|
|
* @retval HAL state
|
|
*/
|
|
HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef* hrtc)
|
|
{
|
|
/* Return RTC handle state */
|
|
return hrtc->State;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @@addtogroup RTC_Private_Functions RTC Private Functions
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Enter the RTC Initialization mode.
|
|
* @note The RTC Initialization mode is write protected, use the
|
|
* __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
|
|
* @param hrtc RTC handle
|
|
* @retval An ErrorStatus enumeration value:
|
|
* - HAL_OK : RTC is in Init mode
|
|
* - HAL_TIMEOUT : RTC is not in Init mode and in Timeout
|
|
*/
|
|
HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef* hrtc)
|
|
{
|
|
uint32_t tickstart = 0U;
|
|
|
|
/* Check if the Initialization mode is set */
|
|
if((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET)
|
|
{
|
|
/* Set the Initialization mode */
|
|
hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK;
|
|
|
|
tickstart = HAL_GetTick();
|
|
/* Wait till RTC is in INIT state and if Time out is reached exit */
|
|
while((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET)
|
|
{
|
|
if((HAL_GetTick()-tickstart) > RTC_TIMEOUT_VALUE)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Convert a 2 digit decimal to BCD format.
|
|
* @param Value Byte to be converted
|
|
* @retval Converted byte
|
|
*/
|
|
uint8_t RTC_ByteToBcd2(uint8_t Value)
|
|
{
|
|
uint32_t bcdhigh = 0U;
|
|
|
|
while(Value >= 10U)
|
|
{
|
|
bcdhigh++;
|
|
Value -= 10U;
|
|
}
|
|
|
|
return ((uint8_t)(bcdhigh << 4U) | Value);
|
|
}
|
|
|
|
/**
|
|
* @brief Convert from 2 digit BCD to Binary.
|
|
* @param Value BCD value to be converted
|
|
* @retval Converted word
|
|
*/
|
|
uint8_t RTC_Bcd2ToByte(uint8_t Value)
|
|
{
|
|
uint32_t tmp = 0U;
|
|
tmp = ((uint8_t)(Value & (uint8_t)0xF0U) >> (uint8_t)0x4U) * 10U;
|
|
return (tmp + (Value & (uint8_t)0x0FU));
|
|
}
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#endif /* HAL_RTC_MODULE_ENABLED */
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|